High-Precision Beam Polarimetry for the CREX Experiment

Allison J. Zec (she/her)

Univ. of New Hampshire

2023-06-27

Parity Violating Electron Scattering & Helicity

• Measure scattering asymmetry from left & right handed polarized electrons:

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \frac{\mathcal{M}^*_{\gamma} \mathcal{M}_W}{\mathcal{M}^2_{\gamma}} \quad (1)$$

- Requires polarized electron beam with fast helicity-flipping
 - High beam polarization = higher asymmetry resolution

CREX

- PVES Calcium Radius Experiment
- Target: 6 mm thick ⁴⁸Ca
- $E \simeq 2.2 \text{ GeV}, \theta = 5^{\circ}$

G. Hagen et. al. Nat. Phys. 12 (2015) 2 (186-190)

CREX

- PVES Calcium Radius Experiment
- Target: 6 mm thick ⁴⁸Ca
- $E \simeq 2.2 \text{ GeV}, \theta = 5^{\circ}$

G. Hagen et. al. Nat. Phys. 12 (2015) 2 (186-190)

CREX Systematics Estimates from PAC40 Proposal

Source	Systematic
Charge Normalization	0.1%
Beam Asymmetries	0.3%
Detector Nonlinearity	0.3%
Transverse Asymmetry	0.1%
Polarization	0.8%
Inelastic contribution	0.2%
Q^2	0.8%
Total Systematics	1.2%

CREX Systematics Estimates from PAC40 Proposal

Source	Systematic
Charge Normalization	0.1%
Beam Asymmetries	0.3%
Detector Nonlinearity	0.3%
Transverse Asymmetry	0.1%
Polarization	0.8%
Inelastic contribution	0.2%
Q^2	0.8%
Total Systematics	1.2%

As proposed, beam polarimetry is a leading systematic...so how precise polarimetry can we do?

High-Precision Compton Polarimetry

Hall A Compton Polarimeter

Optics table device layout

• Polarimeter consists of:

- Magnetic chicane to steer beam
- Fabry-Perot cavity on laser table
- Photon calorimeter
- High-speed DAQ system
- Laser/Amp outputs at λ =1064 nm, but is doubled to λ =532 nm
- Laser polarization measured on table

Compton Photon Detector

Images Credit: J. C. Cornejo (2019)

- Detector Components:
 - Pb Collimator
 - Pb Sync Shield
 - GSO scintillator
 - PMT and DAQ readout
- Signals read out per rapidly-flipping helicity state
- Measure helicity-correlated asymmetry
- LED's allow for in-situ detector tests

Example photon pulse with energy matching the PREX Compton-edge. The CREX Compton edge photons had about 4x greater energy

Allison J. Zec (she/her) (Univ. of New Hampshire) High-Precision Beam Polarimetry for the CREX Experi

Polarimetry Measurement: Integrating Method

How to measure a Compton Asymmetry: Integrate the signal over pedestal per helicity state. Measure signal *S*, for each laser state ON, OFF and helicity state +, -. Helicity pattern difference (Δ), sum (*Y*), and asymmetry (A) distributions are calculated:

$$\mathcal{A}_{exp} = \langle \mathcal{A}_{ON}
angle - \langle \mathcal{A}_{OFF}
angle = \mathcal{P}_{e} \mathcal{P}_{\gamma} \langle \mathcal{A}_{I}
angle$$

With laser DOCP \mathcal{P}_{γ} , energy-weighted average analyzing power $\langle \mathcal{A}_l \rangle$, and beam polarization \mathcal{P}_e .

$$\begin{split} \Delta_{ON} &= S_{ON}^{+} - S_{ON}^{-} \\ \Delta_{OFF} &= S_{OFF}^{+} - S_{OFF}^{-} \\ Y_{ON} &= S_{ON}^{+} + S_{ON}^{-} \\ Y_{OFF} &= S_{OFF}^{+} + S_{OFF}^{-} \\ \mathcal{A}_{ON} &= \frac{\Delta_{ON}}{Y_{ON} - \langle Y_{OFF} \rangle} \\ \mathcal{A}_{OFF} &= \frac{\Delta_{OFF}}{\langle Y_{ON} \rangle - \langle Y_{OFF} \rangle} \end{split}$$

Laser Polarization

Above: Off-100% DOCP polarization points with the optical model fit. Image credit: D. Gaskell (2022)

Laser DOCP Systematics		
Source	$\delta P/P$	
Fit params	0.13%	
Time Dependence	0.05%	
Birefringence	0.10%	
Residuals	0.34%	
Total	0.36%	

- Laser polarization characterized by tests on table
- Optical model converged on one solution
- Mean laser polarization: 99.99%
 - Includes periods of running off-100% DOCP

Collimator Offset

- Tracking photon beam position proved difficult
- Simulate cycle collimator offset from cyclewise offset distribution
- By rescaling distribution measure χ^2 for each simulated snail

- Match χ^2 matched to running conditions
- Calculate polarization correction for conditions
- Polarization correction of **0.2%** matches χ^2 of CREX run

Detector Corrections

Nonlinearity

- 1 kHz pulser system w/ load = CREX signal
 - Track $Yield(var + \Delta) Yield(var)$
- Nonlinearity out to 2*CE
- Very small analyzing power correction $(\approx 0.02\%$ for CREX)

Gain Shift

- Evidence of small change in pulse size with background signal size
- Nonzero shift necessitates dynamic correction
- Bench tests of gain shift done
 - Analysis yielded correction factor for $\mathcal{A}_{\textit{exp}}$
- Systematic from gain shift: 0.15%

 $\mbox{Left:}$ Evidence of a gain shift from a linearity run taken during beam operations

CREX Compton Polarimetry Result

CREX Polarization Measurements (Compton & Moller)

• Moller and Compton show superb agreement even with time-dependence

CREX Compton Result

 $\mathcal{P}_e = (87.15 \pm 0.38)\%$

Result is 0.44% (relative) precision polarimetry measurement!

CREX Compton Polarimetry Result

CREX Polarization Measurements (Compton & Moller)

- Moller and Compton show superb agreement even with time-dependence
- Moller average is **87.0** and previously reported 0.85% systematics

CREX Compton + Moller Result

 $\mathcal{P}_e = (87.10 \pm 0.33)\%$

Result is 0.44% 0.38% (relative) precision polarimetry measurement!

CREX Results & Beyond

CREX Results

CREX Asymmetry

$$\mathcal{A}_{PV}^{48} = 2668 \pm 106 (ext{stats}) \pm 39 (ext{syst})$$
 parts per billion

Neutron Skin Thickness

$$R_n^{48} - R_p^{48} = 0.121 \pm 0.035 \; {
m fm}$$

Uncert. Source	<i>A_{PV}</i> uncert. contribution
Acceptance normaliza- tion	0.90%
Inelastic Contamination	0.82%
Transverse asymmetry	0.49%
Polarization	0.39%
Radiative Corrections	0.37%
Beam Correction	0.27%
Nonlinearity	0.26%
Isotopic purity	0.11%
Total	1.49%

Published in PRL! D. Adhikari et al Phys. Rev. Lett. **129** 042501

Above: CREX measured $F_{ch} - F_W$ compared to one family of theory models with different weak radii.

Even Higher Precision Polarimetry?!

MOLLER

Above: Target, magnet, and detector concept for MOLLER experiment. Image courtesy of MOLLER collaboration.

- High precision measurement of weak mixing angle at low Q^2
- Expected $\mathcal{A}_{PV} \approx 35.6$ ppb

- MOLLER proposal calls for 0.4% overall polarimetry measurement
 - Not trivial to accomplish...
- Addition of electron detector to measure asymmetries at 11 GeV

• Currently in development!!

• Extremely fast helicities at 2 kHz...detector needs upgrade!

See C. Palatchi talk about MOLLER experiment!

Precision Determination of the Neutral Weak Form Factor of ⁴⁸Ca (The CREX Collaboration)

D. Athikari,¹ H. Albatanish,² D. Androie,³ K.A. Aniol,⁴ D.S. Armstrong,³ T. Averett,⁵ C. Ayerbe Gayoso,⁵ S.K. Barcaso, ⁶ V. Bellni,⁷ K.S. Benninsetta,⁴ J. F. Fenesch,⁶ H. Blatt,⁹ D. Blatter Pathak,⁸ D. Blettwal,⁹ B. Biakis,⁶ J. B. Byd,¹¹ Q. Campagna,⁵ A. Cansonne,⁶ G.D. Cates,¹¹ Y. Chen,⁸ C. Clarke,¹² J.C. Correjo,¹³ S. Covrig Duss,⁶ M. M. Dalton, P. D. Patta,¹⁴ C. Delaynade,^{12,15,16} D. Dutta,⁹ C. Feldman,^{12,15} F. Dethey,¹⁴ C. Gall,^{36,31,12} D. Gaskell,⁸ T. J. Gaskell,⁸ T. Gartaso,¹⁴ P. C. Boshynak,^{12,15,16} D. Dutta,⁹ C. Feldman,^{12,15} F. Dethey,¹⁴ C. Gall,^{36,31,12} D. Gaskell,⁸ T. J. Gaskell,⁸ T. Gartaso,¹⁴ D. C. Boshynak,^{12,15,12} L. Matta,¹¹ S. J. Mansen,¹⁶ M. M. Scass,^{36,6} S. Kakkar,¹⁰ S. Katkar,¹⁰ S. Katkar,¹⁰ S. K. Kumar,¹⁰ T. Kutz,¹² K. Laskbey,^{14,16} D. Nichsel,⁸ C. Mettas,⁸ H. Michaels,⁸ M. Mikovilovic,^{25,20} M.M. Mondal,^{12,15} J. Napolitano,²⁰ A. Narayan,²⁷ D. Nickolez,³⁰ V. Ovens,⁵ C. Palatti,^{11,13} J. Ran,¹⁰ B. Pandey,¹⁸ S. Park,⁵¹ S. D. Nenske,^{11,17} M. Petrasky,¹² M.L. Pitt,²⁹ S. Premathikake,¹¹ B. Quinni,¹³ R. Radoff,²² S. Rahman,¹⁰ M.N.H. Rashad,¹¹ A. Rathad,¹² J. P. Elsend,¹⁴ J. P. Elsend,¹⁴ J. P. Elsend,¹⁴ J. P. Bendey,¹⁵ S. Robal,¹⁶ J. J. Sonder,²³ M. Stodel,¹⁴ J. J. Rapolitano,²⁶ M. M. Sondal,¹⁵ J. S. Roseka,¹⁴ J. M. Patrasky,¹² M.L. Pitt,²⁹ S. Premathikake,¹⁴ B. Quinni,¹³ R. Radoff,²⁵ S. Rahman,¹⁰ M.N.H. Rashad,¹⁴ A. Rathad,¹⁴ J. P. Elsend,¹⁴ J. P. Elsend,¹⁴ J. P. Reish,¹⁶ J. J. P. Robin,¹⁶ S. S. Robin,¹⁶ J. R. Robin,¹⁶ S. Sonde,¹⁴ J. Androish,¹⁶ S. Mansu,¹⁶ M. M. Sondas,¹⁴ J. A. Bashad,¹⁴ J. P. Bashad,¹⁴ J. P. Rabadis,¹⁵ J. S. Robin,¹⁶ J. S. Robin,¹⁶ J. S. Boshad,¹⁴ J. S. Pandey,¹⁵ S. Robin,¹⁶ J. J. Rubadis,¹⁶ J. S. Robin,¹⁶ J. J. Rubadis,¹⁶ J. J. Sonder,²⁷ M. J. Kabadis,¹⁶ J. A. Rubadis,¹⁶ J. P. R. Rubadis,¹⁷ J. Rubadis,¹⁶ J. S. Andolf, J. Z. S. Kabadis,¹⁶ J. S. M

Thank you to all of our 100+ collaborators!

- CREX: experiment of the current PVES generation
- CREX results released, now in PRL!
- CREX polarimetry most accurate of any Compton measurement thus far
- Controlled systematic uncertainties from photon detector/laser
- Many improvements forthcoming for more Compton measurements

Trans & Nonbinary Physicists

The Trans and Nonbinary Physicists Discord server is an online community for transgender and nonbinary physicists — from enthusiasts to professors! — to socialize, network, and support one another. All are welcome, and so far we have over 200 members from across the world!

Trans & Nonbinary Physicists

The Trans and Nonbinary Physicists Discord server is an online community for transgender and nonbinary physicists — from enthusiasts to professors! — to socialize, network, and support one another. All are welcome, and so far we have over 200 members from across the world!

Questions, comments, concerns, observations?

Backup Slides

Weak Charge & Neutron Skin

• Theory predicts "neutron skin"

- Excess neutrons pushed radially outwards against surface tension due to pressure of nuclear matter
- Asymmetry correlated with EM & weak form factors:

$$A_{PV} \approx \frac{G_F q^2}{4\pi\alpha\sqrt{2}} \frac{F_W}{F_{ch}} \qquad (2)$$

	Proton	Neutron
EM Charge	1	0
Weak Charge	0.08	1

Current theory models predicting neutron radius and asymmetry highly correlated, but not constrained well by neutron radius measurements

Image Credit X. Roca-Maca et. al. (2011)

Beam Monitors & Modulation

Need to correct for false asymmetries:

$$A_{PV} = A_{raw} - A_Q - \sum_i \alpha_i \Delta x_i - \alpha_E A_E \quad (3)$$

- Charge monitors track A_Q
- Position monitors track helicity correlated position & energy differences
- Feedback system helps minimize false asymmetries

Beam Modulation:

- Detector response correlated with artificially-induced beam motion
- Used in concert with regression

Beam Corrections

Regression

ΔE

Modulation

Lagrangian Multipliers

- Position, angle and energy information taken from position monitors
- Trajectories correlated with changes in measured A_{raw}
- Magnetic coils alter beam trajectory periodically, in sequence
- Correlation slopes extracted from beam changes
- Create set of Lagrangian multipliers to minimize regression correction
- Constraints come from modulation slopes

Møller Polarimeter

- 3-4 T fields magnetically saturates Fe foil target
- Spectrometer optics configured to minimize kinematic uncertainties
- Runs taken \approx weekly

PREX-II Results

PREX-II Asymmetry

 $\mathcal{A}_{PV} = 550 \pm 16 (\text{stats}) \pm 8 (\text{syst})$ parts per billion

Neutron Skin Thickness

$$R_n - R_p = 0.283 \pm 0.071$$
 fm

Uncert. Source	A _{PV} uncert. contribution
Polarization	0.95%
Acceptance	0.83%
normalization	
Beam correction	0.54%
Detector nonlin-	0.49%
earity	
Carbon contami-	0.26%
nation	
Charge Correction	0.04%
Inelastic Contami-	0.02%
nation	
Total	1.48%

PREX-II paper published in PRL! Phys.Rev.Lett. 126 (2021) 17, 172502

Above: New baryon density curves calculated from PREX-II results.

Allison J. Zec (she/her) (Univ. of New Hampshire) High-Precision Beam Polarimetry for the CREX Experi

Compton Backup

Laser Cycling

- To handle shifts in background, we periodically flip off the laser
- Backgrounds calculated on cycle-to-cycle basis
- 1 cycle = a laser-on period, sandwiched by two laser off periods

Acc0/NAcc0:mpsCoda {mpsCoda>=524000 && mpsCoda<566377}

Top: Plot of helicity correlated differences vs time for one PREX-II run Bottom: Plot of sums for same time period

In each plot, low variation of the integrated signal is likely indicative of healthy data. In all plots, blue represents laser-on periods, red represents laser-off.

Data shown here was taken over a \approx 90 minute period.

Laser Polarization Model

Before run:

- NPBS used to used to characterize DOCP in-cavity
- Complicated by birefringence of cavity mirrors
- Entrance scans, exit scans, cavity scans...

During run:

- Additional verification: running off 100%
- QWP/HWP changed for multiple snails to alter DOCP
- Saw polarization magnitude decrease
- Systematic look low
 - Study on birefringence parameters still pending

Compton Summary Presentation

Compton Polarization Mean: Piecewise Fits

Polarization [pct] vs Escargatoire

- Fit each run "piece" to either pol0 or pol1 depending on time-dependence
- Require pol1 slopes for IHWP OUT/IN per piece to be equal

- Average calculated from fit evaluations; uncertainties from fit parameters
- Average measured polarization: (87.119 \pm 0.016 (stat))%

Model	Avg. Pol [pct]	Abs. Pol Uncert.
Escargatoire	87.118	0.018
Average		
Piecewise	87.119	0.016
Fitting		
Mini-Esc.	87.104	0.019
Average		

- All polarization averaging models agree CREX average is ${\approx}87.1$
- $\bullet~$ Model uncertainty for average is $<\!0.1\%$
- Well below our leading systematic
- Total Compton statistics are on order of 0.02% relative
 - CREX compton polarimetry uncertainty will not be statistics-dominant

Compton Spectra

Systematic: Collimator Offset (How it's supposed to work)

- Simulate spectra with various offsets from collimator center
- Match spectra from low-current spectrum runs
- Best-fit simulation determines offset, chicane BPM positions recorded

- Fit offsets and projected collimator points, mean position is collimator center
- Use production BPM positions to determine dynamic collimator offset

Systematic: Collimator Offset (What happened?)

- Problem: fitted center suggests some compton runs were >7 mm offset of collimator center
 - Would have been immediately noticeable in production spectra

Blue-0mm Red-5mm Green-6mm Yellow-7mm Black-7.5mm

Above: Simulated spectra with different offsets. Notice the effect of offset is visible at low energies.

Spectrum Comparison (Background Subtracted)

Above: Production spectrum (predicted to have 7 mm offset) compared with 6 mm simulated offset spectrum.

- No production spectra with a >6 mm offset found
- Possible causes:
 - BPM current calibration
 - Laser table differential movement
- Investigation of cause is limited by background

- Potential change in signal size at high PMT load
- Flash LED with constant brightness during production
- Measured brightness at different laser periods maps gain shift
 - This was only done once during all CREX running
- When scaled to correct signal size find 1.0246% gain shift which is a **0.15%** correction to asymmetry

Systematic: Nonlinearity

PMT response function with nonlinear terms:

$$Y(I) = I + \alpha I^2 + \beta I^3 + \gamma I^4 + \dots$$

or equivalently. . .

$$\frac{Y}{I} - 1 = \alpha I + \beta I^2 + \gamma I^3 + \dots$$

where I is light intensity and Y is detector response

- In situ pulser system used to make measurements
- Parameters α, β, γ found to be smaller than expected (only 0.12% integral nonlinearity at CE)
- Nonlinearity affects analyzing power by 0.02%

Beam-Related Systematics

Beam Energy

- \bullet CREX measured beam energy 2182.22 ±1.1 MeV slightly different from simulation energy
- Results in 0.103% correction to analyzing power
- After applying correction beam energy uncertainty is 0.05%

Radiative Corrections

• Use "low energy" approximation to Born-asymmetry correction:

$$\mathcal{A}_{meas} = \mathcal{A}_{Born}(1 + \Delta \mathcal{A})$$

$$\Delta \mathcal{A} \simeq rac{lpha}{\pi} rac{3 cos(heta) - 1}{4(rac{E_{\gamma}}{E_e} + cos(heta))}$$

• Find all asymmetries need to be corrected by -0.3%

- Compton reporting one overall average rather than point-to-point correction
- Systematics:
 - \bullet Collimator offset limited by χ^2 calculation
 - Laser DOCP and optical model
 - Gain shift limited by upper bound
 - Model/time-dependence largely doesn't contribute
 - Small contributions from others
- Highly precise measurement due to new systematics upper-bounds

Source	Relative	Uncertainty
	Correction	Contribution
Collimator	-	0.20%
Offset		
Laser DOCP	0.26%	0.36%
Gain Shift	-	0.15%
Model	-	0.02%
Beam En-	0.103%	0.05%
ergy		
Nonlinearity	-	0.02%
Rad Correc-	0.3%	<0.01%
tions		
Statistics	-	0.02%
Total	-	0.44%

Acknowledgments: J. C. Cornejo, M. Dalton, C. Gal, D. Gaskell, C. Palatchi, K. Paschke, A. Premithilake, B. Quinn

Pedestal Shifts/Beam Instabilities

- Pedestal shifts: problem throughout all PREX
 - Traced to attenuator box in Feb 2020
- Shift behavior highly variable in duration and magnitude
- Beam Instability:
 - Quick position instabilities cause us to miss photon target
 - High backgrounds from interception on cavity apertures
 - Periods of high laser-off asymmetry

Comparison of healthy cycle (left) and cycle with instantaneous pedestal shifts (right)