Precision Short Range Correlation studies in Nuclei

Justin Estee (MIT)

Short range, short lived, highly correlated pairs

High relative momentum Low center of mass momentum

Pair Abundance

Where are pairs formed? Which nucleons pair? Do 3N SRC exist?

Center of Mass Motion

Precision CM measurements

Pair Interaction

Precision NN interaction at short distances

Run Group-M (RGM)

- Ran November 2021 February 2022
- (H, D, ⁴He, ⁴⁰Ar, ⁴⁰Ca, ⁴⁸Ca, ¹²⁰Sn)
- Fully calibrated, currently reconstructing data

Pair Abundance

Where are pairs formed? Which nucleons pair? Do 3N SRC exist?

Center of Mass Motion

Precision COM measurements

Pair Interaction

Precision NN interaction at short distances

Andrew Deniston (MIT)

Pair Abundance

Where are pairs formed? Which nucleons pair? Do 3N SRC exist?

Center of Mass Motion

Precision COM measurements

Pair Interaction

Precision NN interaction at short distances

Change the resolution **scale** of the reaction by looking at dependence on momentum transfer Q^2 , |t|

Probe

Compare different reactions using different **probes**: Electron-scattering, Proton-scattering, Photoproduction

See Jackson Pybus's talk after this

Andrew Denniston (MIT)

Pair Abundance

Where are pairs formed? Which nucleons pair? Do 3N SRC exist?

Center of Mass Motion

Precision COM measurements

Pair Interaction

Precision NN interaction at short distances

Precision C.M. motion

Center of Mass Motion

RG-M Preliminary Data

CLAS6 Data

Andrew Deniston (MIT)

Andrew Denniston (MIT)

Pair Abundance

Where are pairs formed? Which nucleons pair? Do 3N SRC exist?

Center of Mass Motion

Precision COM measurements

Pair Interaction

Precision NN interaction at short distances

SRC in Asymmetric Nuclei CaFe Exp. (Hall C)

20

CaFe and RG-M

• CaFe

- 11 GeV: ⁹Be, ¹⁰B, ¹¹B, ¹²C, ⁴⁰Ca, ⁴⁸Ca, ⁵⁴Fe
- Small aperture spectrometers
- Separate Mean field and SRC kinematic settings
- o (e,e'p) only
- RG-M
 - \circ 6 GeV : C, ⁴⁰Ca, ⁴⁸Ca, ¹²⁰Sn
 - CLAS12
 - (e,e'p), (e,e'pN)

Data / MC comparison

Good agreement with mean field nucleons between data and simulation (SIMC)

RG-M and CaFe Agreement

PRELIMINARY No systematic errors.	Integrated Ratios ⁴⁸ Ca/ ⁴⁰ Ca SRC per proton
RG-M (Hall B)	1.03 (2)
CaFe (Hall C)	1.02 (1)

RGM very preliminary Confirms CaFe results <10% of RG-M data set

CaFe: RG-M Carlos Yero (ODU) Julian Kal Dien Nguyen (JLAB) Ron Wag

RG-M Julian Kahlbow (MIT) Ron Wagner (Tel Aviv U.)

24

(e,e') and (e,e'p) disagreement?

(e,e') cross section ratio is NOT the SRC pair ratio!

Varying model parameters changes SRC pair ratio by 10% (e,e') measures (np, pp, nn) pairs

Conclusions

- Lots of exciting new physics to do
- Lots of data to analyze and work to be done
- Stay tuned for more exciting results

Thank you!