

Hyperon Program in Hall D

Nilanga Wickramaarachchi

On behalf of the GlueX Collaboration

GlueX experiment

- Liquid hydrogen target
- \bullet Bremsstrahlung photons tagged in the energy range 3.0 11.6 GeV
 - Linearly polarized tagged photons $\sim 9~{\rm GeV}$ produced by coherent bremsstrahlung
- Nearly 4π angular coverage
- Detection of charged tracks and photons leads to exclusively reconstruct final state of a reaction
- GlueX phase II started in 2019 with DIRC detector installed

Hyperons studied

- $\Lambda(1405) \to \Sigma^0 \pi^0$
- Y, Y^* production mechanisms $(Y = \Lambda, \Sigma)$
 - $\Sigma^0 \to \Lambda \gamma$
 - $\Lambda(1520) \to K^- p$
 - $\Lambda\bar{\Lambda}$
- Ground and excited states of Cascades
 - $\Xi^{-}(1320)$
 - $\Xi^{*-}(1530)$
 - $\Xi^{*-}(1820)$

$\Lambda(1405) -$ Introduction

- $\Lambda(1405)$ just below $\overline{K}N$ threshold (1.432 GeV)
- In quark model $\Lambda(1405)$ can be considered as spin-orbit partner of $\Lambda(1520)$
- Invariant mass ("line shape") of Λ(1405) from experiments distorted from Breit-Wigner form (E.g. K. Moriya, et al, Phys. Rev. C 87, 035206 (2013))
- $\Lambda(1405)$ decays 100% into $\Sigma\pi$

- Some chiral unitary models suggest Λ(1405) to be composed of two I=0 poles
 (E.g. M. Mai, U.-G. Meissner, Eur. Phys. J. A 51, 30 (2015))
- Recent PDG has $\Lambda(1380)$ added as a two-star resonance

		Overall	Status as seen in —			
Particle	J^P	status	$N\overline{K}$	$\Sigma\pi$	Other channels	
$\Lambda(1116)$	$1/2^{+}$	****			$N\pi$ (weak decay)	
$\Lambda(1380)$	$1/2^{-}$	**	**	**		
$\Lambda(1405)$	$1/2^{-}$	****	****	****		
$\Lambda(1520)$	$3/2^{-}$	****	****	****	$\Lambda\pi\pi,\Lambda\gamma,\Sigma\pi\pi$	
$\Lambda(1600)$	$1/2^{+}$	****	***	****	$\Lambda\pi\pi, \Sigma(1385)\pi$	
$\Lambda(1670)$	$1/2^{-}$	****	****	****	$\Lambda\eta$	
$\Lambda(1690)$	$3/2^{-}$	****	****	***	$\Lambda\pi\pi, \Sigma(1385)\pi$	

V.D. Burkert et al., " Λ and Σ Resonances", The Review of Particle Physics (2022)

Maxim Mai, arXiv:2010.00056 (2020)

• $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$ decay is pure I=0 (no contamination from $\Sigma^0(1385)$) and data is very limited

$$\frac{d\sigma(\pi^+\Sigma^-)}{dM_I} \propto \frac{1}{3} |T^{(0)}|^2 + \frac{1}{2} |T^{(1)}|^2 + \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*})$$
$$\frac{d\sigma(\pi^-\Sigma^+)}{dM_I} \propto \frac{1}{3} |T^{(0)}|^2 + \frac{1}{2} |T^{(1)}|^2 - \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*})$$
$$\frac{d\sigma(\pi^0\Sigma^0)}{dM_I} \propto \frac{1}{3} |T^{(0)}|^2$$

J. C. Nacher, E. Oset, H. Toki, A. Ramos, Phys. Lett. B455, 55 (1999)

- $\Sigma^0 \pi^0$ decay is very useful to study the $\Lambda(1405)$ line shape
- GlueX can reconstruct neutral showers well \implies ideal to reconstruct $\Sigma^0 \pi^0$ decay mode
- Study of the $\Lambda(1405)$ line shape would provide more information on how the $\Sigma \pi$ and $N\bar{K}$ channels contribute to its production

Previous measurements for $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$

• First observed in bubble chamber experiments in 1961 (M. Alston et al., Phys. Rev. Lett. 6, 698 (1961)) K^-p interactions at 1.15 GeV/c

Experiment	Beam momentum / energy	Reaction
ANKE	3.65 GeV/c proton beam	$pp \rightarrow pK^+Y^0$
CLAS	$1.95 < W < 2.85 { m GeV}$	$\gamma p \to K^+ \Sigma \pi$
BGOOD	$1.55 < E_{\gamma} < 2.9 \text{ GeV}$	$\gamma p \to K^+ \Sigma^0 \pi^0$

Phys. Lett. B 660 167 (2008)

Phys. Rev. C 87, 035206 (2013) Phys. Lett. B455, 55 (1999)

CLAS

- --- I = 0 line shape
- – Incoherent background
 - Fit to data

GlueX can exclusively reconstruct $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$ with use of kinematic fitting to reduce background and optimize mass resolution

Event selection

- GlueX Phase-I data
- Photon beam energy = 6.5 11.6 GeV
 - Luminosity $\sim 423 \text{ pb}^{-1}$
- Exclusive reconstruction of $\gamma p \to K^+ \pi^- p \gamma \gamma \gamma$
- Kinematic fit conserving 4-momentum and constraining event vertex
 - π^0 and Σ^0 masses constrained to improve $\Sigma^0 \pi^0$ mass resolution

• Focus on t-channel production of $\Lambda(1405)_{-7}$

Invariant mass of $\Sigma^0 \pi^0$

• $0 \,\mathrm{GeV}^2 < -(t - t_{min}) < 1.5 \,\mathrm{GeV}^2$

- Clear peaks of $\Lambda(1405)$ and $\Lambda(1520)$
- 13351 ± 139 counts in the $\Lambda(1405)$ region ($M_{\Sigma^0 \pi^0} < 1.47$ GeV) (Assumed background free)
- A sharp drop of yield at $\overline{K}N$ threshold seen for $\Lambda(1405)$
- Simulations indicate good resolution for $\Sigma^0 \pi^0$ mass in $\Lambda(1405)$ region

- Normalization yet to be finalized
- Uncertainties are only statistical
- $\Lambda(1405)$ line shape deviates from a Breit-Wigner form

- Compound coherent $\Lambda(1405)$'s
- Flatte-type amplitude
- Incoherent $\Lambda(1520)$ and backgrounds
- $\Lambda(1405)$ is split into two centroids at ~ 1387 MeV and ~ 1409 MeV
- K-matrix fits in progress

Phys. Lett. B 833 137375 (2022) Phys. Lett. B 660 167 (2008)

do/dm (nb MeV⁻¹ C²) 1.5 1.0

0.5

0

Phys. Rev. C 87, 035206 (2013) Phys. Lett. B455, 55 (1999)

π⁰Σ⁰ mass (MeV/c²)

- $\Lambda(1405)$ line shape deviates from a Breit-Wigner form
- High statistics in GlueX to study $\Lambda(1405)$ line shape

- Compound coherent $\Lambda(1405)$'s
- Flatte-type amplitude

 $d\sigma$

- Incoherent $\Lambda(1520)$ and backgrounds
- $\Lambda(1405)$ is split into two centroids at $\sim 1387 \text{ MeV}$ and $\sim 1409 \text{ MeV}$
- K-matrix fits in progress

Y, Y^* production mechanisms

X - Exchanged particle in t-channel (Regge trajectory)

 $Y - \Lambda, \Sigma$

- t-channel exchange expected to dominate at GlueX photon beam energies $t = (p_{\gamma} p_{K^+})^2$
- For exchanged particle with parity P and spin J, naturality $\eta = P(-1)^J$
 - $\eta = +1 \implies$ natural parity
 - $\eta = -1 \implies$ unnatural parity
- Study type of parity exchanged by measuring beam asymmetry (Σ) and spin density matrix elements (SDME)
 - $K^+\Sigma^0$ beam asymmetry
 - $\Lambda(1520)$ SDMEs

 $K^+\Sigma^0$ beam asymmetry

- ~ 20% of GlueX-I data
- Photon beam energy = 8.2 8.8 GeV
- Measure beam asymmetry Σ
 - Difference between cross sections for photon polarized perpendicular and parallel to reaction plane

Phys. Rev. C 101, 065206 (2020) (GlueX Collaboration)

- Natural parity exchange dominates in t-channel Average $\Sigma = 1.00 \pm 0.05$
- Consistent with theoretical predictions
 Phys. Rev. C 75, 045204 (2007)
 Nucl. Phys. A 627, 645 (1997)
- SLAC results at $E_{\gamma} = 16 \text{ GeV}$ Phys. Rev. D 20 1553 (1979)
- Higher statistical precision from GlueX compared to SLAC

$\Lambda(1520)$ **SDMEs**

Phys. Rev. C 105, 035201 (2022) (GlueX Collaboration)

- Polarization transfer to Λ^* with $J^P = \frac{3}{2}^-$
- $\gamma p \to K^+ \Lambda(1520)$ $\Lambda(1520) \to K^- p$ (Branching fraction = 22.5%)
- $\sim 20\%$ of GlueX-I data
- Photon beam energy = 8.2 8.8 GeV
- Study *t*-channel exchange in Gottfried-Jackson frame

• Combinations of SDMEs can be expressed as linear combinations of purely natural or purely unnatural exchange amplitudes

Natural - e.g. $K^*(892), K_2^*(1430)$ Unnatural - e.g. $K(492), K_1(1270)$

• Natural amplitudes exchange dominates

Phys. Rev. C 96, 025208 (2017)

Byung-Geel Yu and Kook-Jin Kong,

$\Lambda(1520)$ cross section

• Differential cross sections $\frac{d\sigma}{dt}$

for $\Lambda(1520)$ photoproduction

• Compared to SLAC measurements at $E_{\gamma} = 11 \text{ GeV}$

Phys. Lett. B 34 , 547 (1971)

- Good agreement with SLAC data particularly at higher beam energies
- Fit $\frac{d\sigma}{dt}$ results with function $ct^a e^{bt}$ and integrate to get total cross section
- CLAS and SLAC data are fit using function cE_{γ}^{2a-2} Phys. Rev. C 88 , 045201 (2013) Phys. Lett. B 34 , 547 (1971)
- GlueX results agree very well with the fit

$\Lambda\bar{\Lambda}$ photoproduction

- $\gamma p \to \Lambda \bar{\Lambda} p \to p \pi^- \bar{p} \pi^+ p$
- GlueX-I data
- Photon beam energy = 6.4 11.6 GeVLuminosity ~ 439.6 pb^{-1}
- Model reaction kinematics using single and double Regge processes
- Good agreement between data and MC

- Measure cross sections to study reaction mechanisms
- Investigating enhancements at threshold
- Also studying polarization of $\Lambda\bar{\Lambda}$ pair

Cascades

- Hyperons with strangeness S = -2
- Data for Ξ resonances is very limited
 - Production cross sections are small
 - Final states are complicated to analyze

	J^P	Overall status	Status as seen in —					
Particle			$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$	Other channels	
$\Xi(1318)$	1/2 +	****					Decays weakly	
$\Xi(1530)$	3/2+	****	****					
$\Xi(1620)$		*	*					
$\Xi(1690)$		***		***	**			
$\Xi(1820)$	3/2-	***	**	***	**	**		
$\Xi(1950)$		***	**	**		*		
$\Xi(2030)$		***		**	***			
$\Xi(2120)$		*		*				
$\Xi(2250)$		**					3-body decays	
$\Xi(2370)$		**					3-body decays	
$\Xi(2500)$		*		*	*		3-body decays	

C.G. Wohl, " Ξ Resonances", The Review of Particle Physics (2022)

• GlueX is able to reconstruct final states exclusively and will provide more data on Ξ resonances

 $\Xi^{-}(1320)$

• Ground state Cascade

Jesse Hernandez (Baryons 2022)

- GlueX-I data
- Clear peak of Ξ^- in the $\Lambda\pi^-$ mass spectrum

Ξ^- cross section

• t calculated using high momentum K^+

 $t = (p_{\gamma} - p_{K_{high}^+})^2$

- Integrated differential cross section compared with CLAS data (Phys. Rev. C 98, 062201(R) (2018))
- Systematics are being evaluated
- Observe cross section falls with energy

- GlueX-I data
- $\Xi^{*-}(1820) \to K^-\Lambda$
- First cross section results for $\Xi^{*-}(1820) \rightarrow K^{-}\Lambda$ in photoproduction
- No significant energy dependence for cross section

Summary and Outlook

- GlueX is ideally suited for exclusive reconstruction of $\Lambda(1405) \rightarrow \Sigma^0 \pi^0$
 - Observed $\Lambda(1405)$ line shape clearly deviates from a Breit-Wigner form
 - Preliminary fits support two-pole structure for $\Lambda(1405)$
- Studying Y, Y^* production mechanisms in photoproduction
 - $K^+\Sigma^0$ beam asymmetry
 - $\Lambda(1520)$ SDMEs and cross section
 - $\Lambda\bar{\Lambda}$ photoproduction
- GlueX data will provide valuable information on Cascades
 - $\Xi^{-}(1320)$
 - $\Xi^{*-}(1530)$
 - $\Xi^{*-}(1820)$

GlueX acknowledges the support of several funding agencies and computing facilities: <u>gluex.org/thanks</u>

Backup $-\Lambda(1405) \rightarrow \Sigma^0 \pi^0$

(a.u.)

Cross section do/dM

25

Hyperon Spectrum for γp to $K^+ \Sigma^0 \pi^0$ Total Fit NK $\Lambda(1405)$ states Coherent sum Λ(1520) Background $\Sigma^0 \pi^0$ GlueX 0.60 < -t' < 1.50 GeV² GLUE Preliminary 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 Invariant Mass $\Sigma^0 \pi^0$ (GeV) R. A. Sch. / CMU

- Coherent fit to two $\Lambda(1405)$'s
- Incoherent $\Lambda(1520)$ and backgrounds
- Relative intensities of two $\Lambda(1405)$'s change with $-t^{'}$
- Fits describe the data well in all -t' bins
- Fits support two-pole structure
- K-matrix fits in progress

$\Lambda(1520)$ **SDMEs**

• SDMEs are directly related to helicity amplitudes of the production process

