

Super Bigbite Spectrometer, Experimental Program

Bogdan Wojtsekhowski,

for SBS collaboration

Composite structure of the nucleon

O.Stern,1937

E.Fermi,1947

The magnetic moment of the proton was measured by the method of the magnetic deflection of molecular beams employing H₂ and HD. The result is $\mu P=2.46\mu_0 \pm 3$ percent.

PHYSICAL REVIEW

VOLUME 72, NUMBER 12

DECEMBER 15, 1947

On the Interaction Between Neutrons and Electrons*

E. FERMI AND L. MARSHALL Argonne National Laboratory and Institute for Nuclear Studies, University of Chicago, Chicago, Illinois (Received September 2, 1947)

The possible existence of a potential interaction between neutron and electron has been investigated by examining the asymmetry of thermal neutron scattering from xenon. It has been found that the scattering in the center-of-gravity system shows exceedingly little asymmetry. By assuming an interaction of a range equal to the classical electron radius, the depth of the potential well has been found to be 300 ± 5000 ev. This result is compared with estimates based on the mesotron theory according to which the depth should be 12000 ev. It is concluded that the interaction is not larger than that expected from the mesotron theory; that, however, no definite contradiction of the mesotron theory can be drawn at present, partly because of the possibility that the experimental error may have been underestimated, and partly because of the indefiniteness of the theories which makes the theoretical estimate uncertain.

INTRODUCTION

THE purpose of this paper is to investigate an interaction between neutrons and electrons due to the possible existence of a short range potential between the two particles. If such a short range force should exist, one would expect some evidence of it in the scattering of neutrons by atoms. The scattering of neutrons by an atom is mostly due to an interaction of the of nuclear forces. According to these theories, proton and neutron are basically two states of the same particle, the nucleon. A neutron can transform into a proton according to the reaction:

Actually, a neutron will spend a fraction of its time as neutron proper (left-hand side of Eq. (1))

Motivation

JLUO-2023

Electron-nucleon elastic scattering – Rosenbluth, 1950: hadron current structure

Nucleon current, one-photon approximation, $\alpha_{em} = 1/137$,

 $\mathcal{J}_{hadron}^{\mu} = ie\bar{N}(p_f) \left[\gamma^{\nu} F_1(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_2(Q^2)\right] N(p_i)$

$$\frac{d\sigma}{d\Omega}(E,\theta) = \frac{\alpha^2 E' \cos^2(\frac{\theta}{2})}{4E^3 \sin^4(\frac{\theta}{2})} [(F_1^2 + \kappa^2 \tau F_2^2) + 2\tau (F_1 + \kappa F_2)^2 \tan^2(\frac{\theta}{2})]$$

$$\frac{d\sigma}{d\Omega}(E,\theta) = \sigma_M \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2(\frac{\theta}{2})\right]$$

The first measurement of the Form Factors

Motivation

JLUO-2023

Electron-nucleon elastic scattering – Akhiezer, 1958: double spin correlation

$$f^{\pm}(artheta,arphi) = rac{\epsilon(artheta,arphi)}{2\pi} \left[1 \pm A_y (P^{fpp}_x \sin arphi - P^{fpp}_y \cos arphi)
ight]$$

where \pm refers to electron beam helicity

$$A = rac{f^+ - f^-}{f^+ + f^-} = A_y \left(P_x^{fpp} \sin arphi - P_y^{fpp} \cos arphi
ight)$$

$$\mu_p rac{G_E^p}{G_M^p} = -\mu_p rac{E_e + E_e'}{2M_p} an rac{ heta_e}{2} \left(rac{P_x^{fpp}}{P_y^{fpp}} \sin \chi_ heta + \gamma_p (\mu_p - 1) \Delta \phi
ight)$$

Method

Electron-nucleon elastic scattering –

Durand, 1959: neutron/proton ratio

1972 DESY, PL 39B. Q2 = 1.5 GeV2; δGMn/GMn ~ 5% 1994 CLAS6, Q2 up to 4.8 GeV2; 2007 SBS/GMn proposal

The nucleon structure in terms of GPDs Muller, Ji, Radyushkin

Reduction formulas at $\xi = t = 0$ for DIS and $\xi = 0$ for FFs $H^q(x, \xi = 0, t = 0) = q(x)$ $\tilde{H}^q(x, \xi = 0, t = 0) = \Delta q(x)$ $\int_{-1}^{+1} dx H^q(x, 0, Q^2) = F_1^q(Q^2)$ $\int_{-1}^{+1} dx E^q(x, 0, Q^2) = F_2^q(Q^2)$

The JLab G_E^n experiments

F. Gross, 1987, CEBAF Physics program (iv) Measurement of the charge structure of the neutron and deuteron. Coincidence techniques must be used to measure these basic quantities, and hence the capabilities of CEBAF will be needed to obtain accurate measurements at high Q^2 . These important quantities are sensitive to quark distributions.

Motivation

The goal is understanding of the nucleon

Motivation

The goal is understanding of the nucleon

pQCD prediction for large Q^2 : $S \rightarrow Q^2 F_2/F_1$

pQCD updated prediction: $S \rightarrow \left[Q^2/\ln^2(Q^2/\Lambda^2)\right] F_2/F_1$

Flavor separated contribution: The log scaling for the proton Form Factor ratio at few GeV² is "accidental".

The lines for individual flavor are straight!

Cates, Jager, Riordan, BW Physical Review Letters, 106, 252003 (2011)

Flavor contributions to the nucleon FFs

Experimental Program

Electromagnetic form factors

in proton $F_i^p = e_u F_i^u + e_d F_i^d$ $F_i^n = e_u F_i^d + e_d F_i^u$

The experiment suggests that the probability of proton survival after absorption of a massive virtual photon is much higher when the photon interacts with an up quark, which is doubly represented in the proton.

This may be interpreted as an indication of the up-up correlation. At high Q^2 a correlation usually enhances the high momentum component and the interaction cross section.

The relatively weak down quark contribution to the F_{1p} indicates a suppression of the up-down correlation or a mutual cancellation of different types of up-down correlations.

Diquark workshop – ECT-2019

Diquark correlations in hadron physics: Origin, impact and evidence

M.Yu. Barabanov¹, M.A. Bedolla², W.K. Brooks³, G.D. Cates⁴, C. Chen⁵, Y. Chen^{6,7}, E. Cisbani⁸, M. Ding⁹, G. Eichmann^{10,11}, R. Ent¹², J. Ferretti¹³, R.W. Gothe¹⁴, T. Horn^{15,12}, S. Liuti⁴, C. Mezrag¹⁶, A. Pilloni⁹, A.J.R. Puckett¹⁷, C.D. Roberts^{18,19,*}, P. Rossi^{12,20}, G. Salmé²¹, E. Santopinto²², J. Segovia^{23,19}, S.N. Syritsyn^{24,25}, M. Takizawa^{26,27,28}, E. Tomasi-Gustafsson¹⁶, P. Wein²⁹, B.B. Wojtsekhowski¹²

Progress in Particle and Nuclear Physics 116 (2021) 103835

JLab detector landscape

A range of 10^5 in luminosity.

The LH₂ target can be used up to L ~ 10^{39}

The polarized ³He at L ~ 10^{37}

Sullivan - tagging on soft proton The polarized NH_3 at L ~ 10^{35}

JLab detector landscape

A range of 10⁴ in luminosity.

A big range in solid angle: from 5 msr (SHMS) to about 1000 msr (CLAS12).

The SBS is in the middle: for solid angle (up to 70 msr) and high luminosity capability.

In several A-rated experiments SBS was found to be the best match to the physics.

GEM allows a spectrometer with open geometry (-> large acceptance) at high L.

Focusing spectrometers

ESA

Stanford SLAC DESY Bonn Bates NIKHEF Mainz JLab

Large acceptance spectrometers

PEGASYS-1989

Spectrometers

CLAS6

HERMES-1995

CLAS12

Medium acceptance spectrometers

F. Gross / CEBAF:

$Concept \ of \ the \ SBS$

Lambertson magnet in accelerator

SBS collaboration

JLab, INFN, UVa, CMU, AANL, UoG, StMU, W&M, ODU, NCCU, NCAT, CSLA, VT, ...

The nucleon FFs

The nucleon FFs

Two-arm setup in the FF experiments

$$\begin{split} \sigma_p/p &= 0.08 + 0.004 \times p[\text{GeV}] \\ \sigma_\theta &= 1-2, \text{ mrad} \\ \Omega &= 70-90 \text{ msr, for } \theta \geq 30^\circ \end{split} \qquad \begin{aligned} \sigma_p/p &= 0.0029 + 0.0003 \times p[\text{GeV}] \\ \sigma_\theta &= 0.14 + 1.3/p[\text{GeV}], \text{ mrad} \\ \Omega &= 72 \text{ msr, for } \theta \geq 15^\circ \\ \Omega &= 30 \text{ msr, for } \theta = 7.5^\circ \end{aligned}$$

GEn-II: E12-09-016

Experimental Program^{JLUO-2023}

SBS is constructed

SBS magnet parameters and operation confirmed in GMn and GEn runs

SBS detectors

- Protection resistors are outside the chamber: reliable, easy access.
- $\hfill\square$ Large alignment pins, away from the active area
- Wide frames on the two sides not in active area: better mechanical rigidity and more room for gas inlets, HV traces etc.
- Electronics arranged to minimize the material within active area.

HCAL – hadron calorimeter

GEM – multi layer tracker largest in the world

ECAL – high temperature lead-glass calorimeter

Figure-of-Merit in One- & Two-Arm experiments

One-arm experiments: high \mathcal{L} and large Ω ($\Delta Q^2/Q^2 \sim 0.1$): The Super Bigbite Spectrometer is the best choice due to large solid angle $\Omega = 70$ msr and detector rate capability

Two-arm experiments deal with elastic or quasi-elastic p_m ~ 0.2 GeV/c for the nuclei; ~ 0.5-1 GeV/c for the nucleon The high Q²/t/v experiment N(e,e'h) means p_h ~ 2-8 GeV/c; 70 msr of SBS acceptance: the detector captures efficiently events up to p_m ~ p_h/5 => one setting could be a whole experiment

 $FOM = \mathcal{L} \times \Omega_{electron} = 10^{38} \cdot 0.07 = 7 \times 10^{36}$ $electron/s \times nucleon/cm^2 \times sr$

Experimental Program

 SBS Nucleon FF program will provide precision results up to: G^p_E @ 12 GeV² (FOM up due to SBS Ω x10 and GEM) Gⁿ_E @ 10 GeV² (FOM up due to 3He x10 - convection) Gⁿ_M @ 13.5 GeV² (p/n with SBS magnet and HCAL)

The nucleon FFs

The nucleon FFs

Experimental Program

 SBS Nucleon FF program will provide precision results up to: G^p_E @ 12 GeV² - there is perspective to 15 GeV² ✓ Gⁿ_E @ 10 GeV² - on the limit ✓ Gⁿ_M @ 13.5 GeV² - there is perspective to 18 GeV²

done | in the provisional schedule Experimental program includes: nTPE; Pion ALL/KLL; GEn-RP; neutron/proton approved | new ideas for after move to Hall C => SIDIS; TDIS; DVCS; g2p/d2p; γDVCS

approved | under study reuse of the detectors: WACS, polWACS, TCS, sFF

 $\Omega_{o} x 10$ dp/p gluonGPD

*

Electromagnetic form factors strange quarks contribution

$$F_{i}^{p} = e_{u}F_{i}^{u} + e_{d}F_{i}^{d} + e_{s}F_{i}^{s},$$

$$F_{i}^{n} = e_{u}F_{i}^{d} + e_{d}F_{i}^{u} + e_{s}F_{i}^{s},$$

Current assumption is sFF = 0

$$\int_0^1 \mathrm{d}x \big[s(x) - \bar{s}(x) \big] = 0$$

 $F_1^s(0) = 0$ $F_2^s(0) = \mu_s$

JLUO-2023

Impact of sFF on flavor decomposition

$$F_{1p} = e_u F_1^u + e_d F_1^d + e_s F_1^s$$
$$F_{1n} = e_u F_1^d + e_d F_1^u + e_s F_1^s$$

$$F_1^u = 2F_{1p} + F_{1n} - F_1^s \qquad F_1^d = 2F_{1n} + F_{1p} - F_1^s$$

Summary

- Accurate measurements of the Nucleon Form Factors at high Q² will significantly boost understanding of the nucleon.
- JLab 12-GeV is providing beam and critical infrastructure with large acceptance and rate capability for experiments.
- GMp results are published, two GMn experiments took data, GEn will be completed in 2023, in 2024 will be a SBS/GEp experiment.

Experiments are diamonds

Form Factors are forever

