The **Esperimental Program**

Giulio Mezzadri (INFN Ferrara) gmezzadr@fe.infn.it

On behalf of the \mathbf{FSII} collaboration

Jefferson Lab User Organization Annual Meeting – JLAB - 06/26/2023

BEPCII @ IHEP

Chinese Academy of Sciences

LINAC Collider

Largest particle accelerator in China

electron-positron collider

 $E_{cm} = 2 - 4.95 \text{ GeV}$

Luminosity = 10^{33} cm⁻²s⁻¹

To be upgraded in 2024 to increase luminosity at high energy

06/26/2023

BEST @ BEPCII

Muon counters: $\delta_{r\phi} = 1.4 \text{ cm} - 1.7 \text{ cm}$ Electromagnetic Calorimeter: dE/ \sqrt{E} (1 GeV) = 2.5 % Time Of Flight: σ_t (barrel) = 70 ps σ_t (endcap) = 60 ps Main Drift Chamber: σ_x (1 GeV/c) ~ 130 µm dp/p (1 GeV/c) = 0.5 %

BESTI @ BEPCII

Muon counters: $\delta_{r\phi} = 1.4 \text{ cm} - 1.7 \text{ cm}$ Electromagnetic Calorimeter: dE/ \sqrt{E} (1 GeV) = 2.5 % Time Of Flight: σ_t (barrel) = 70 ps σ_t (endcap) = 60 ps Main Drift Chamber: σ_x (1 GeV/c) ~ 130 µm dp/p (1 GeV/c) = 0.5 %

BESIII datasets guarantee rich physics program

- world's largest 10B J/ ψ dataset for light hadron searches

- 2.7B $\psi(\text{2S})$ for conventional charmonia below threshold

- ~30/fb for XYZ measurements and above threshold searches

- fine scan at low mass for R and light hadron searches

06/26/2023

Hadrons @ BESIII

						Ivallie		widdine v)	Julinal	ai Aiv
glish.ihep.c	as.cn/bes	/re/pu/NewParticles/				N(2570)	2570 ₋₁₀₋₁₀ +19+34	250 ₋₂₄₋₂₁ +14+69	PhysRevLett.110, 022001	1207.0223
					2//1700	N(2300)	2300 ₋₃₀₋₀ +40+109	340 ₋₃₀₋₅₈ +30+110	PhysRevLett.110, 022001	1207.0223
					Y(4790)		1877.3±6.3 _{-7.4} +3.4	57±12 ₋₄ +19	PhysRevLett.107, 182001	1107.1806
					2//1500		1842.2±4.1.2.6 ^{+7.1}	83±14±11	PhysRevD.88.091502	1305.5333
			Y(4390)		Y(4500) 😑	X(2500)	2470 ₋₁₉₋₂₃ +15+101	230 ₋₃₅₋₃₃ +64+56	PhysRevD.93.112011	1602.01523
	7 (4000		Y(4320)							
	Z _c (4020) Z _c (4020)	Y(4230)		7 (3985) [±]	X(2262)	2262±4±28	72±5±43	PhysRevD.104.052006	2104.08754
•	7 (3000)±				2 _{cs} (3965)			83±16 ₋₁₁ +31	PhysRevLett.106.072002	1012.3510
	2 _c (3300)	Ψ ₂ (3823)				X(2370)	2376.3±8.7 _{-4.3} +3.2	$83 \pm 17_{-6}^{+44}$	PhysRevLett.106.072002	1012.3510
		2				X(2600)	2617.8±2.1-1.9 ^{+18.2}	200± 8-17 ⁺²⁰	PhysRevLett. 129, 042001	2201.10796
						X(2356)	2356±7±17	304±28±54		2211.10755
		26 new hadron	s at BESIII			f0(2480)	2470± 4-6 ⁺⁴	75±9-8 ⁺¹¹	PhysRevD 105, 072002	2201.09710
N(2570) N(2300) X(2500)					omega(2250)	2223±16±11	51±29±21	PhysRevD.105.032005	2112.15076	
				X(2600)	a0(1817)+-0	1817±8 ±20	97 ±22±15	PhysRevLett.129.182001	2204.09614	
				f ₂ (2480)	eta1(1855)	$1855 \pm 9_{-1}^{+16}$	$188 \pm 18_{-8}^{+3}$	PhysRevLett. 129, 192002	2202.00621	
				X(2356	Y(4390)	4391.6 _{-6.9} +6.3±1.0	139.5 _{-20.6} ^{+16.2} ±0.6	PhysRevLett. 118, 092002	1610.07044	
_				X(2	X(2262)		4320.0±10.4±7.0	$1101.4_{-19.7}^{+25.3} \pm 10.2$	PhysRevLett. 118, 092001	1611.01317
(1040)						Y(4230)	4222.0±3.1±1.4	44.1±4.3±2.0	PhysRevLett. 118, 092001	1611.01317
	~ (1840)				η ₁ (1855) Δ					
					a ₀ (1817)	Y(4790)	4793.3±7.5	27.1±7.0		2305.10789
						psi2(3823)	$3821.7 \pm 1.3 \pm 0.7$	<16	PhysRevLett.115.011803	1503.08203
						Y(4500)	4484.7±13.3±24.1	111.1±30.1±15.2	Chin.Phys.C,46,111002	2204.07800
						Zc(3900)+-	3899.0±3.6±4.9	46±10±20	PhysRevLett.110.252001	1303.5949
12	2014	2016	2019	2020	2022	Zc(3900)0	3894.8±2.3±3.2	29.6±8.2±8.2	PhysRevLett.115.112003	1506.06018
12	2014	2010	2010	2020	2022	$Z_{c}(4020)+-$	4022.9 + 0.8 + 2.7	7.9 + 2.7 + 2.6	PhysRevLett.111.242001/	1309.1896/
						20(1020)			PhysRevLett.112.132001	1308.2760
		Date of a	rXiv subm	ission		Zc(4020)0	4023.9±2.2±3.8	7.9(Fixed)	PhysRevLett.113.212002	1409.6577
					Zcs(3985)+-	$3982_{-2.6}^{+1.8} \pm 2.1$	12.8 _{-4 4} +5.3±3.0	PhysRevLett.126.102001	2011.07855	

arXiv

Today's outline

Light hadrons spectroscopy:

- η₁(1855)
- $\Phi(2170)$ searches
- X(2600) in J/ $\psi \rightarrow \gamma \eta' \pi \pi$
- cusp effect in $\eta' \rightarrow \pi^0 \pi^0$ a₀(1817)^{0,±} in D_s decays

XYZ states:

- X(3872) production at BESIII
- Status of Y states
- Z_{cs}(3985) isospin triplet

Other non-spectroscopy measurements:

- hyperon polarization
- hyperon scattering with beam pipe
- neutron form factor
- inclusive hadron production
- dark photon from charmed baryons

Light hadrons spectroscopy

PRD 106, 072012 (2022) PRL 129, 192002 (2022) Event selection

 $J/\psi \to \gamma \eta \eta', \eta \to \gamma \gamma \eta' \to \eta \pi \pi / \gamma \pi \pi$

Backgrounds estimated from η^\prime sidebands in data No significant peaking background

PWA

Covariant tensor amplitude (EPJ A 16, 537) and GPUPWA (J. Phys. Conf. Ser. 219, 042031)

- Background subtracted
- Combined unbinned maximum likelihood fit for the two η' decay

All kinematically allowed resonance with 0^{++} , 2^{++} , 4^{++} ($\eta\eta'$) and 1^{+-} and 1^{--} ($\gamma\eta^{(+)}$) considered

A significant 1⁻⁺ additional contribution is needed in the $\eta\eta'$ system around 1.9 GeV

Further checks

Angular distribution as a function of $M(\eta\eta')$ can be expressed model-independently in terms of Legendre polynomial moments

$$\langle Y_l^0 \rangle \equiv \sum_{i=1}^{N_k} W_i Y_l^0(\cos\theta^i_\eta)$$

Data, W_i are background subtracted MC, W_i are from the PWA events

The moments are related to the spin-0 (S), spin-1 (P) and spin-2 (D) amplitudes by

 $\sqrt{4\pi} \langle Y_0^0 \rangle = S_0^2 + P_0^2 + P_1^2 + D_0^2 + D_1^2 + D_2^2,$

$$\begin{split} \sqrt{4\pi} \langle Y_1^0 \rangle &= 2S_0 P_0 \cos \phi_{P_0} + \frac{2}{\sqrt{5}} (2P_0 D_0 \cos(\phi_{P_0} - \phi_{D_0}) + \sqrt{3}P_1 D_1 \cos(\phi_{P_1} - \phi_{D_1}) \\ \\ \sqrt{4\pi} \langle Y_2^0 \rangle &= \frac{1}{7\sqrt{5}} (14P_0^2 - 7P_1^2 + 10D_0^2 + 5D_1^2 - 10D_2^2) + 2S_0 D_0 \cos \phi_{D_0}, \\ \\ \sqrt{4\pi} \langle Y_3^0 \rangle &= \frac{6}{\sqrt{35}} (\sqrt{3}P_0 D_0 \cos(\phi_{P_0} - \phi_{D_0}) - P_1 D_1 \cos(\phi_{P_1} - \phi_{D_1})), \end{split}$$

 $\sqrt{4\pi} \langle Y_4^0 \rangle = \frac{1}{7} (6D_0^2 - 4D_1^2 + D_2^2),$

JLUO Annual Meeting

3

(b)

3

(d)

The η_1 (1855): experimental vs LQCD

An isoscal 1⁻⁺, η_1 (1855), has been observed in J/ $\psi \rightarrow \gamma \eta \eta'$ (> 19 σ)

gluonic excitations

hybrid

Q

Ø

Scalar glueball decay to $\eta\eta^{\prime}$ suppressed with respect to the $\pi\pi$ mode

f₀(1710) and the glueball gluonic excitations

Significant J/ $\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta'$ has been observed, while $f_0(1710)$ is insignificant

 $\frac{B(f_0(1500) \to \eta \eta')}{B(f_0(1500) \to \pi \pi)} = (8.96^{+2.95}_{-2.87}) \times 10^{-2},$

 $\frac{B(f_0(1710) \to \eta \eta')}{B(f_0(1710) \to \pi \pi)} < 1.61 \times 10^{-3} \text{ (90\% CL)}$

which supports the hypothesis of a large $f_0(1710)$ /glueball overlap

History of a decay full of surprises

Radiative $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

06/26/2023

$10B J/\psi$ Era

Most accurate measurements of this final state

 $\eta' \to \gamma \pi \pi$ and $\eta' \to \eta \pi \pi$

Confirmed known state:

- f₀(1500)
- X(1835)
- X(2120)
- X(2370)
- η_c

Observed a new state!

X(2600)

Phys. Rev. Lett. 129 (2022) 042002

TABLE I. Masses and widths of the $f_0(1500)$, X(1540), and X(2600). The first uncertainties are statistical, and the second are systematic.

Resonance	Mass (MeV/ c^2)	Width (MeV)
$f_0(1500)$	$1492.5 \pm 3.6^{+2.4}_{-20.5}$	$107\pm9^{+21}_{-7}$
X(1540)	$1540.2 \pm 7.0^{+36.3}_{-6.1}$	$157 \pm 19^{+11}_{-77}$
X(2600)	$2618.3 \pm 2.0^{+16.3}_{-1.4}$	$195\pm5^{+26}_{-17}$

More than 20σ significance for the 3 resonances

Structure @ 1.5 GeV well described by interference between $f_0(1500)$ and X(1540)

φ(2170) in K*K

Hints on the nature of $\phi(2170)$ may be found by searching for other final states, testing different models.

PWA of $e^+e^- \rightarrow KK\pi^0$ process

~600/pb dataset divided in two groups (2-2.230 GeV and 2.3 -3 GeV) to study intermediate resonances contribution.

Good agreement with BaBar and SND data in $KK\pi^{0}$ and $\varphi\pi^{0}$ cross section.

Peak in K*(892)K and K*(1430)K! Simultaneous fit to both cross section assuming same structure in both channels

 $M_R = (2190 \pm 19) \,\mathrm{MeV}/c^2$ and $\Gamma_R = (191 \pm 28) \,\mathrm{MeV}$

Moreover: BR in K*(1440)K is more than 10 times larger than BR(K*(892)K)

φ(2170) in φπ⁺π⁻

ArXiv: 2112.13219

Additional final states can also pin-point BW parameters of $\phi(2170)$

Additional resonance in the spectrum hinted by BaBar at 2.4 GeV

Using ~650/pb, study of the $\varphi\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$ process

Parameters	Solution I	Solution II
$M_r(\phi(1680))$	169°	4 ± 8
$\Gamma_r(\phi(1680))$	227	± 32
$Br\Gamma_{ee}(\phi(1680))$	21.8 ± 1.3	43.6 ± 1.5
$M_r(\phi(2170))$	2076	5 ± 10
$\Gamma_r(\phi(2170))$	243	± 21
$Br\Gamma_{ee}(\phi(2170))$	10.8 ± 1.0	81.9 ± 5.5
$\phi_{\rm P}(\phi(2170)/\phi(1680))$	0.75 ± 0.14	-2.07 ± 0.05

 $\phi(2170)$ comparable with other observations

Not enough statistics to identify structure at 2.4 GeV

Cusp effect in $\eta' \rightarrow n \pi^0 \pi^0$ decay

- Study the fundamental properties of QCD at low energies
- Test effective ChPT
- Investigation on $\pi\pi$ and $\pi\eta$ final interactions
- Sizeable cusp effect in this decay

 $\begin{array}{c} P \\ \hline \pi^+ \\ \pi^- \\ \pi^0 \end{array}$

The S-wave charge-exchange rescattering $\pi^+\pi^- \rightarrow \pi^0 \pi^0$ causes a prominent cusp at the center of mass energy corresponding to the summed mass of two charged pions.

06/26/2023

JLUO Annual Meeting

with CUSP effect19

PRD 105 (2022) L051103

D_c decay can be also used to shed new light on nature of light hadrons, like $f_0(1710)$

Due to high interference between f_0 and a_0 , in the paper denoted generically as S-state.

Branching ratio of the full process is measured and it is compatible with PDG

Based on $f_0(1710)$ results, it is necessary that an $a_0(1710)^0$ state exists, as observed by BaBar (Phys. Rev. D 104, 072002 (2021))

An $a_0(1710)^0$ charged partner is also expected in K_cK mass to be searched in $D_{c} \rightarrow K_{c}K^{+}\pi^{0}$

 $D_{s} \rightarrow K_{s}K^{+}\pi^{0}$

PRL 129 (2022) 182001

Using 6.28/fb D_s data, study the decay to search for possible $a_0(1710)$ charged partner

Total BR is found to be compatible with previous measurements

Observed a charged a_0 -like structure in $K_s K^+$ mass with significance greater than 10 σ . This results supports the existence of a new a_0 triplet, as predicted by Phys. Rev. D 79, 074009 (2009) and other works

Its mass is 100 MeV larger than expectation for $f_0(1710)$ isospin-1 partner. To extract further details on its nature, combined amplitude analysis of $D_s \rightarrow K_s K_s \pi^+$ and $D_s \rightarrow K_s K \pi^0$ is needed 06/26/2023 JLUO Annual Meeting 21

XYZ states

X(3872) production mode

20th anniversary of X(3872) discovery. Still, only clues on its nature.

PRL 129 (2022) 112003

Bonus tracks from BESIII physics program

Ξ^{0} hyperon polarization

Arxiv: 2305.09218

Hyperons have the most precise measurements of CP violation in the baryon sector

Doubly strange hyperons can be used as a probe for weak and strong phase differences by measuring the sequential decay chain

$$\tan(\xi_P - \xi_S) = \frac{\sqrt{1 - \alpha_\Xi^2} \sin \phi_\Xi + \sqrt{1 - \bar{\alpha}_\Xi^2} \sin \bar{\phi}_\Xi}{\alpha_\Xi - \bar{\alpha}_\Xi},$$
$$\tan(\delta_P - \delta_S) = \frac{\sqrt{1 - \alpha_\Xi^2} \sin \phi_\Xi - \sqrt{1 - \bar{\alpha}_\Xi^2} \sin \bar{\phi}_\Xi}{\alpha_\Xi - \bar{\alpha}_\Xi}.$$

Formalism exploits polarization, entanglement and sequential decays

PRD 99(1019) 056008 PRD 100(2019) 114005

$$\mathcal{W}(\boldsymbol{\xi}, \boldsymbol{\omega}) = \sum_{\mu, \bar{\nu} = 0}^{3} \underbrace{C_{\mu\bar{\nu}}}_{\mu', \bar{\nu}' = 0} \sum_{\mu', \bar{\nu}' = 0}^{3} \underbrace{a_{\mu\mu'}^{B_1} a_{\bar{\nu}\bar{\nu}'}^{B_1} a_{\mu'0}^{B_2} a_{\bar{\nu}'0}^{\bar{B}_2}}_{\mu', \bar{\nu}' = 0}$$

9-dim phase space given by 9 helicity angles, 8 free parameters determined by unbinned MLL method

Arxiv: 2305.09218

Ξ^{0} hyperon polarization

Clear

polarization!

Results:

- First measurement of Ξ⁰ polarization
- Improved $\Xi^0 \Xi^0$ decay parameters
- Improved precision on Weak phase difference (compared to Ξ⁻ decay – Nature 606 (2022) 64)
- Independent CP tests

Parameter	This work	Previous result
$\alpha_{J/\psi}$	$0.514 \pm 0.006 \pm 0.015$	0.66 ± 0.06 [34]
$\Delta \Phi(\text{rad})$	$1.168 \pm 0.019 \pm 0.018$	-
α_{Ξ}	$-0.3750 \pm 0.0034 \pm 0.0016$	-0.358 ± 0.044 [18]
$\bar{\alpha}_{\Xi}$	$0.3790 \pm 0.0034 \pm 0.0021$	0.363 ± 0.043 [18]
$\phi_{\Xi}(rad)$	$0.0051 \pm 0.0096 \pm 0.0018$	0.03 ± 0.12 [18]
$\bar{\phi}_{\Xi}(\mathrm{rad})$	$-0.0053 \pm 0.0097 \pm 0.0019$	-0.19 ± 0.13 [18]
α_{Λ}	$0.7551 \pm 0.0052 \pm 0.0023$	0.7519 ± 0.0043 [13]
\bar{lpha}_{Λ}	$-0.7448 \pm 0.0052 \pm 0.0017$	-0.7559 ± 0.0047 [13]
$\xi_P - \xi_S(\text{rad})$	$(0.0\pm1.7\pm0.2)\times10^{-2}$	-
$\delta_P - \delta_S(\text{rad})$	$(-1.3 \pm 1.7 \pm 0.4) \times 10^{-2}$	-
A_{CP}^{Ξ}	$(-5.4 \pm 6.5 \pm 3.1) \times 10^{-3}$	$(-0.7 \pm 8.5) \times 10^{-2}$ [18]
$\Delta \phi_{CP}^{\Xi}(\mathrm{rad})$	$(-0.1 \pm 6.9 \pm 0.9) \times 10^{-3}$	$(-7.9 \pm 8.3) \times 10^{-2}$ [18]
A^{Λ}_{CP}	$(6.9 \pm 5.8 \pm 1.8) \times 10^{-3}$	$(-2.5 \pm 4.8) \times 10^{-3}$ [13]
$\langle \alpha_{\Xi} \rangle$	$-0.3770 \pm 0.0024 \pm 0.0014$	-
$\langle \phi_{\Xi} \rangle$ (rad)	$0.0052 \pm 0.0069 \pm 0.0016$	-
$\langle \alpha_{\Lambda} \rangle$	$0.7499 \pm 0.0029 \pm 0.0013$	0.7542 ± 0.0026 [13]

Hyperon-nucleon scattering with a Ξ^{0} beam with 818 MeV/c momentum

$$\sigma(\Xi^0 + {}^9\text{Be} \to \Xi^- + p + {}^8\text{Be}) = \frac{N^{\text{sig}}}{\epsilon \mathcal{BL}_{\text{eff}}}$$

$$\mathcal{L}_{\text{eff}} = \frac{N_{J/\psi} \mathcal{B}_{J/\psi}}{2 + \frac{2}{3}\alpha} \int_{a}^{b} \int_{0}^{\pi} (1 + \alpha \cos^{2}\theta) e^{-\frac{x}{\sin\theta\beta\gamma L}} N(x) C(x) d\theta dx$$

Clear signal found with 7.1σ significance Cross section estimated to be

 $\sigma(\Xi^0 + {}^9\text{Be} \to \Xi^- + p + {}^8\text{Be}) = (22.1 \pm 5.3_{\text{stat}} \pm 4.5_{\text{sys}}) \text{ mb}$

Study other hyperons at BESIII ongoing

Neutron form factors

PRL 130, 151905 (2023)

Events classified with 3 categories: 1) <u>n</u> and <u>n</u> in TOF - <u>n</u> in EMC 2) <u>n</u> in TOF - n and <u>n</u> in EMC 3) no TOF - n and <u>n</u> in EMC

First direct measurement of G_{M}

Comparable precision with SL data!

Inclusive hadron production

 e^+e^- colliders can be used to study differential semi-inclusive $e^+e^- \rightarrow h + X$ cross section to compare with Fragmentation Function (FF) theoretical models extrapolated at low energy

Discrepancy observedat difference center of mass energy and hadron momentum. Some contribution from resonances to inclusive production Data can be used to tune FF models at low energy and test collinear QCD.

Dark photon in Charmed baryon decays

FCNC c \rightarrow u γ ' can be used to test BSM theories.

Double tag approach can be used to remove larger backgrounds and search for massless dark photon.

PRD 102 (2020) 115029 predicts BR to be ~ 10⁻⁵

Found upper limit of UL($\Lambda_c \rightarrow p\gamma'$) < 8x10⁻⁵ @ 90% C.L⁻

32

BESIII Future program

Chin.Phys.C 44 (2020) 4, 040001

Pushing towards new limits

Accelerator upgrade: - center of mass maximum energy up to 5.6 GeV - 3 times the present luminosity in XYZ region

A new inner tracker Symmetry 14 (2022) 5, 905

Chin.Phys.C 44 (2020) 4, 040001

New inner tracker starting from an Italian proposal: the CGEM-IT

3 layers of Cylindrical triple-GEM to improve rate capability, radiation hardness and vertexes reconstruction

Status:

- First two layers in Beijing taking data (JINST 15 (2020) 08, • C08004)
- Dedicated readout chain (JINST 16 (2021) 08, P08065) •
- Hybrid costruction of the third layer in on-going

JLUO Annual Meeting

The CGEM-IT project is funded by the EU commission by the RISE-MSCA-H2020-2019 program within the FEST consortium

THANKS!

For many other details, please have a look to HADRON2023 BESIII contributions https://agenda.infn.it/event/33110/contributions/

06/26/2023

Additional materials

PWA fit projections

06/26/2023

$10B J/\psi Era$

06/26/2023

$10B J/\psi$ Era

Phys. Rev. Lett. 129 (2022) 042002

Process	Significance (2.125GeV)	Significance (2.396GeV)
$\phi \pi^0$	18.6σ	2.3σ
$\rho(1450)\pi^0$	7.8σ	2.4σ
$\phi(1680)\pi^0$	19.5σ	14.9σ
$\rho(1900)\pi^0$	7.2σ	7.4σ
$\rho_3(2250)$	5.5σ	5.0σ
$K^{*}(892)K$	15.9σ	15.6σ
$K^*(1410)K$	5.7σ	5.0σ
$K_{2}^{*}(1430)K$	35.4σ	25.3σ
$K_{3}^{*}(1780)K$	5.8σ	5.5σ

Table 2. Statistical significances of possible intermediate processes at $\sqrt{s} = 2.125$ and 2.396 GeV.

Process	Fraction (%) $(2.125 \mathrm{GeV})$	Fraction (%) $(2.396 \mathrm{GeV})$
$\phi \pi^0$	1.8 ± 0.4	0.7 ± 0.3
$\rho(1450)\pi^{0}$	3.8 ± 0.7	0.2 ± 0.2
$\phi(1680)\pi^0$	14.6 ± 2.3	13.6 ± 2.9
$\rho(1900)\pi^0$	2.1 ± 0.3	3.0 ± 1.0
$\rho_3(2250)$	0.9 ± 0.5	0.9 ± 0.6
$K^{*}(892)K$	2.8 ± 0.3	9.3 ± 1.2
$K^*(1410)K$	1.1 ± 0.8	3.6 ± 1.4
$K_2^*(1430)K$	73.0 ± 3.7	64.6 ± 3.2
$K_{3}^{*}(1780)K$	1.3 ± 0.5	2.1 ± 1.4

Table 4. Fit fractions of possible intermediate processes at $\sqrt{s} = 2.125$ and 2.396 GeV.

Φ(2170) in K*K

States	Mass (MeV/c^2)	Width (MeV)	PDG Mass (MeV/c^2)	PDG Width (MeV)
$K_2^*(1430)$	1428 ± 2	107 ± 4	1427.3 ± 1.5	100.0 ± 2.1
$\phi(1680)$	1673 ± 5	172 ± 8	1680 ± 20	150 ± 50
$\rho(1900)$	1880 ± 10	69 ± 15	1860 - 1910	10 - 160
ϕ	fixed	fixed	1019.5 ± 0.02	4.2 ± 0.01
$\rho(1450)$	fixed	fixed	1465 ± 25	400 ± 60
$\rho_3(2250)$	fixed	fixed	2248^{+17+59}_{-17-5} [44]	$185^{+31+17}_{-26-103}$ [44]
$K^{*}(892)$	fixed	fixed	891.7 ± 0.3	50.8 ± 0.9
$K^{*}(1410)$	fixed	fixed	1414 ± 15	232 ± 21
$K_{3}^{*}(1780)$	fixed	fixed	1776 ± 7	159 ± 21

Table 3. Masses and widths of the intermediate states at $\sqrt{s} = 2.125$ GeV. Due to the limited data sample size, only the statistical uncertainties are provided. The parameters of $\rho_3(2250)$ are cited from ref. [44], where the first uncertainty is statistical and the second one is systematic.

Φ(2170) in K^{*}K – PWA projections

Figure 1. At $\sqrt{s} = 2.125 \text{ GeV}$, (a) invariant mass distribution of K^+K^- ; (b) invariant mass distribution of $K^{\pm}\pi^0$; (c) $\cos\theta$ distribution of K^+ in the K^+K^- rest frame; (d) $\cos\theta$ distribution of K^+ in the $K^+\pi^0$ rest frame; (e) $\cos\theta$ distribution of K^+ in the c.m. frame. θ is polar angle with respect to the z-axis. Dots with error bars are data, and the curves are the fit results.

Figure 2. At $\sqrt{s} = 2.396 \text{ GeV}$, (a) invariant mass distribution of K^+K^- ; (b) invariant mass distribution of $K^{\pm}\pi^0$; (c) $\cos\theta$ distribution of K^+ in the K^+K^- rest frame; (d) $\cos\theta$ distribution of K^+ in the $K^+\pi^0$ rest frame; (e) $\cos\theta$ distribution of K^+ in the c.m. frame, θ is polar angle with

ArXiv: 2209.12007 X(3872) direct production

Following the experience of $\chi_{c1}(1P)$ production, we have searched also for X(3872) in $\pi\pi J/\psi$ final state

No observation, upper limit of Γ_{ee} x Br, with different Γ_{tot} hypotheses (U.L of 7.5 x 10⁻³ eV for Γ_{tot} = 1.19 ± 0.21 MeV)

No disagreement with theoretical prediction $\Gamma_{ee} \times Br \ge 0.96 \times 10^{-3} \text{ eV}$ (PLB 736, (2014) 221)

Ξ^{o} polarization

CP variables

$$A_{CP}^{\Xi} = (\alpha_{\Xi} + \bar{\alpha}_{\Xi})/(\alpha_{\Xi} - \bar{\alpha}_{\Xi}),$$

$$\Delta \phi_{CP}^{\Xi} = (\phi_{\Xi} + \bar{\phi}_{\Xi})/2,$$

$$A_{CP}^{\Lambda} = (\alpha_{\Lambda} + \bar{\alpha}_{\Lambda})/(\alpha_{\Lambda} - \bar{\alpha}_{\Lambda}),$$

 A^{Ξ}_{CP} is sensitive to weak phase difference and it can be washed out if small phase $\Delta \Phi^{\Xi}_{CP \text{ has no dependence so it more sensitive to CPV}$

Polarization term in moment distribution

$$P_y(\theta_{\Xi}) = \sqrt{1 - \alpha_{J/\psi}^2} \sin(\Delta \Phi) \cos \theta_{\Xi} \sin \theta_{\Xi} / (1 + \alpha_{J/\psi} \cos^2 \theta_{\Xi})$$

Cusp effect

Matching partial wave decomposition and NREFT

Non cusp pi0pi0 \rightarrow pi0pi0

 $C_{00} = \frac{16\pi}{3}(a_0 + 2a_2)(1 - \xi),$ Cusp term $C_x = \frac{16\pi}{3}(a_2 - a_0)\left(1 + \frac{\xi}{3}\right),$ Non cusp pi+pi- \rightarrow pi+pi- $C_{+-} = \frac{8\pi}{3}(2a_0 + a_2)(1 + \xi),$ $\xi = rac{M_{\pi^\pm}^2 - M_{\pi^0}^2}{M_{\pm}^2},$

Alternative fit (FIT IV) show little contribution of loop non cusp coefficient, while fitting increase parameter correlation

TABLE I.	Experimental	values o	of the	matrix	element	parameters	for η'	\rightarrow	$\eta \pi^0 \pi^0$	'.
----------	--------------	----------	--------	--------	---------	------------	-------------	---------------	--------------------	----

Parameters	Fit I	Fit II	Fit III	Fit IV
a	$-0.075 \pm 0.003 \pm 0.001$	-0.207 ± 0.013	-0.143 ± 0.010	$-0.077 \pm 0.003 \pm 0.001$
b	$-0.073 \pm 0.005 \pm 0.001$	-0.051 ± 0.014	-0.038 ± 0.006	$-0.066 \pm 0.006 \pm 0.001$
d	$-0.066 \pm 0.003 \pm 0.001$	-0.068 ± 0.004	-0.067 ± 0.003	$-0.068 \pm 0.004 \pm 0.001$
$a_0 - a_2$		0.174 ± 0.066	0.225 ± 0.062	$0.226 \pm 0.060 \pm 0.013$
a_0		0.497 ± 0.094		
a_2		0.322 ± 0.129		
Statistical significance		3.4σ	3.7σ	3.6σ

Fixed a0 – 2a2 = 0.1312 in FIT III

06/26/2023