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Uncertainty quantification for GPDs

Global analysis of GPD differs from that of PDFs, but can nonetheless be inspired by some
aspects at the forefront of the phenomenological extraction of functions of one (or more) variables.

GPD extraction is the definition of “a very complex inverse problem.”

=> strong points: (analytical) theoretical constraints to exploit — GPD representations.

= less strong points: not quite at the “accuracy vs. precision” level, subtleties from integrant and

interplay with evolution — what are shadow GPDs in UQ language?

=> points that were put aside: dependence on ¢ is all that’s left in the CFF — DGLAP/ERBL differences.

Constraints

are usually fulfilled through parametrization, Lagrange multipliers and/or prior conditions.
To some extent, all constraints are biases, and need to be treated carefully.
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The shape of parton distributions

Benchmark data
do B (DIS, etc.)

dy

Parton distributions are functions of the momentum

fraction x, they are extracted from data that are
sensitive to specific PDF flavors, etc.

for new processes

=> finding the shape in x is the goal of PDF analyses o(pp->WH+X)

Uncertainty propagates from data and methodology to
the PDF determination.
There are two classes of them,

Benchmark data
do § (DIS, etc)

dy

/ Predictions
for new processes
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The shape of parton distributions

Parton distributions are functions of the momentum

fraction x, they are extracted from data that are
sensitive to specific PDF flavors, etc.

=> finding the shape in x is the goal of PDF analyses

Uncertainty propagates from data and methodology to
the PDF determination.
There are two classes of them,

epistemic vs. aleatory uncertainties

Statistical uncertainty
propagated from experiments

_ — irreducible
Uncertainty due to lack

of knowledge
—bias (may be reduced)
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During today’s sessions, “model” seemed

Oﬂ uncertai nty q uantificatiOn to include all 4 but the experimental one!

Theoretical Experimental

Parametrization Methodology

In all four categories of uncertainties, we can further distinguish

PDF fitting accuracy from PDF sampling accuracy.

Goodness-of-fit applies to an <«— —> Sampling accuracy applies to the
individual best fit. PDF/... ensemble.
[Kovarik et al, Rev.Mod.Phys. 92 (2020)] [ AC et al, Phys.Rev.D107 (2023)]
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Sampling bias and big-data paradox

! D
2 B — Irreducible error  © Confidence Confidence
== Bias intervals intervals
; i Va\N
The truth Our model

Large sample size
of the truth

Pavlos Msaouel (2022)
Cancer Investigation, 40:7, 567-576

With an increasing size of sample n — ©0, under a set of hypotheses, it is usually expected

—1
that the deviation on an observable decreases like (\/Z ) .

That’s the law of large numbers.

What uncertainties keep us from including the truth, ,u?‘

The law of large numbers disregards the quality of the sampling, ~ gi;esd”db'e iCIEY
Xiao-Li Meng
The Annals of Applied Statistics
Vol. 12 (2018), p. 685
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Sampling bias in PDF global analyses

|There Is a “data+sampling defect=confounding correlation” factor in global analyses.

Methodological choices are reflected in the epistemic
uncertainty, including biases from sampling.

xperi- BLEELY

ment Precision
PDFs,
specialized

Priors, including choice of functional form or Bayesian

priors, influence the sampling algorithm. New collider and

fixed-target

Representative sampling accounts for the

confounding correlation, and can ultimately be used Hessian, Monte-Carlo
C : : : techniques, neural

to optimize its contribution, e.g. through the study of networks, reweighting,

largest effective dimensions. Uzt

= dimensionality reduction (effective dimensions) vs. phase space reduction (priors)
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Hypothesis testing and parton distributions

Representative sampling

Curse of Big-data
dimensionality paradox

. Likelihood
Acceptable functions ratios

Tests of PDFs

Analytic conditions and

acceptable bias to be EpIStemIC
Bias-variance Post-fit PDF
adapted to GPDs. separation P D F validations

uncertainty
Precision PDF applications
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Likelihood and sampling — |

What is the adequate objective function for PDF analyses?

P(a|D) o« P(D|a) P(a)
@GXP(—Xgug/Q) X exp(—XQ/Q) eXp(_X?)rior/z)

2 2 2
:>Xaug = X"+ Xprior
[Lepage et al., NPB Proc.Suppl.106(2002) 12-20]

Parameters: parameters of interest @ and nuisance parameters.

Likelihood: “augmented” likelihood contains constraints/priors/penalties as well as the minimal

likelihood. Identify priors on a.
=> to some extent, similar to Lagrange multipliers
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Likelihood and sampling — |l

|On which basis are DFs accepted or rejected?

Likelihood ratios:
two replicas can be ordered according to their relative likelihood or relative prior.

P(,ID) _ POIT) _ P(Ty)
P(T,D) ~ POIT) ~ P(Ty)

= Tposterior = Tikelihood = Tprior

aleatory epistemic + aleatory probabilities

Prior: replica can be discarded based on P(T,) < P(T) even for 1y;1..1n00d ~ 1

PD|T
Likelihood: replica can be accepted based on 7y;.1ih00q = PED : TZ; ~ 1 when P(T,) ~ P(T))
I
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Key role played by priors

|Priors have been identified to reduce the phase space

Constraints fit exploits the benefits of well-controlled priors

“Constrained curve fitting,” [Lepage et al., Nucl.Phys.B Proc.Suppl.106(2002) 12-20] — lattice oriented

=> similarly for polarized PDF analysis [Benel et al, EPJC]

Solutions may be prejudiced by strong priors

Some publications show how strong priors have affected results (that has led to important claims)

= Proton structure: “Parton distributions need representative sampling”+ communication with NNPDF

[CT, PRD107, 2023]
=> Neutrino physics: “Neutrino mass and mass ordering: no conclusive evidence for normal ordering”

[Stefano Gariazzo et al JCAP10(2022)010]

A. Courtoy—IFUNAM UQ Discussion CNF GPD 23




Uncertainty quantification for GPDs

Global analysis of GPD differs from that of PDFs, but can nonetheless be inspired by some
aspects at the forefront of the phenomenological extraction of functions of one (or more) variables.

GPD extraction is the definition of “a very complex inverse problem.”

=> strong points: (analytical) theoretical constraints to exploit — GPD representations.

Can we exploit the “old-style” parametric generation of possible solutions (double dstr., dual param.)?
= less strong points: not quite at the “accuracy vs. precision” level, subtleties from integrant and

interplay with evolution — what are shadow GPDs in UQ language?
Can we think in terms of the bias-variance dilemma?

= points that were put aside: dependence on ¢ is all that’s left in the CFF— DGLAP/ERBL differences.

Can we learn from theory development for the pion (DA vs. PDF)?
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Benchmark for UQ for GPDs

GPD sampling probably at least inclusive of the same items are forPDF sampling, that
takes place over

experimental data sets,
parametrization forms,
hyperparameters,
settings of fits,
model approximations.
+ choice of likelihood (and treatment of syst. uncertainties).

Out-of-fit tests: are closure tests inclusive of sampling bias on the “model”?

—> Epistemic uncertainty can only be optimized if it is understood —though irreducible in

certain cases.
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A hopscotch scan of LHC cross sections for NNPDF4.0 PDFs
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A hopscotch scan of LHC cross sections for NNPDF4 O PDFs
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A hopscotch scan of LHC cross sections for NNPDF4.0 PDFs

Step 3

Guidance from specific cross sections:
we identify 4-7 EV directions that give the

—

largest displacements for a given A)(z per pair.

Large EV directions are shared among various

pairs of cross sections.

Construct the convex hulls for

Ay? =+10,0, — 10, — 20 w.r.t. NNPDF4.0
replica 0 (red).
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A hopscotch scan of LHC cross sections for NNPDF4.0 PDFs

Step 4
For each pair of cross sections, we generate 300

replicas by sampling uniformly along the “large”
EV directions.

Sort the n,,,;,, X 300 resulting replicas according

to their Ay? w.r.t. to NN4O replica O.

Hopscotch replicas are linear combinations of
NNPDF4.0 Hessian EV.

Each of the solutions is an acceptable PDF set
from the NNPDF4.0 fit.

High-density MC sampling of a span of a few
EV directions that drive the specific PDF
uncertainty.
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Likelihoods in PDF analyses

2
Vo [ Ta) =D+ X% B AP |
Fain=y e | LY e
O:
=1 ! a=1

7X@, A7) = 0 = Jo

Simple algebraic eq.

dﬂaq7
N 2
s ( Tha) - D+ T B | &
Ha)=) - + )P @)
=1 [ a=1

a is the vector of parameters of interest

p is the correlation matrix for nuisance parameters
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Figures of merit in the NNPDF4.0 analysis |

1. x* with respect to the central experimental values
Npt

X% =) (T = D) (cov™1);;(T; = D))
L,J

EM: S = Bl X
0 3 S5 Vi Ay

a=1

D;, T;, s; are the central data, theory, uncorrelated error
Bi o« is the correlation matrix for N, nuisance parameters.

Experiments publish g; ,. To reconstruct g; ,, we need to decide on the
normalizations X;.

NNPDF4.0 use:

a. X;=D; . “experimental scheme”; can result in a bias
b. X; = fixed T; : "ty scheme”; can result in a (different) bias

2022-10-20 P. Nadolsky, LPC Physics Forum



Figures of merit in the NNPDF4.0 analysis Il

N : ]
(COV)ij = 33533 S Z Bi.aPj.a, Vi, = (Tz',a‘\i-
a=1
NNPDF4.0 use:
a X;=D; . experimental scheme; can result in a bias

b. X; = fixed T; : ty scheme; can result in a (different) bias

The conventions are neither complete nor unique. Ambiguity affects all groups.
See Appendix in 1211.5142.

2. NNPDF4.0 trains MC replicas with y* for fluctuated D;, t, scheme, and

replica selection (prior) conditions:

fluctuated

Cost=yxz, ( ) + Xprior

3. NNPDF4.0 quotes the final unfluctuated y? in the “exp” scheme.

Experimental scheme: toz sc}l:,em_e :1 233
Xgot/Npt = 1.160. th/ T |

x%(exp) — x*(t,) = —340 for 4618 data points

2022-10-20 P. Nadolsky, LPC Physics Forum



The hopscotch scan counterbalances
the bias of the nominal replica ensemble

6.2 Creating a less biased sub-sample

The basic 1dea 1s to use such partial information about the selection bias to design a biased sub-
sampling scheme to counterbalance the bias in the original sample, such that the resulting sub-samples
have a high likelihood to be less biased than the original sample from our target population. That 1s, we
create a sub-sampling indicator §,, such that with high likelihood, the correlation between S,R, and G,
1s reduced, compared to the original p, ., to such a degree that 1t will compensate for the loss of sample
size and hence reduce the MSE of our estimator (e.g., the sample average). We say with high likelihood, n
its non-technical meaning, because without full information on the response/recording mechanism, we can
never guarantee such a counterbalance sub-sampling (CBS) would always do better. However, with

judicious execution, we can reduce the likelihood of making serious mistakes.

X.-L. Meng, Survey Methodblogy, Catalogue 12-001-X, vol. 48 (2022), #2

2023-04-18 P. Nadolsky, MWDays 2023 @ CERN 35
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Priors and

statistical estimate of an arbitrary function of the
parameters using

Uy =87 [ )ty (15)
where
B = /(\_"Emg(“’)/2 d"p, (16)

and the variance is (T? = (f?) — (f)?, as usual.

In practice these integrals are quite difficult to
evaluate for all but the simplest of fits. This is
because P(p|G) is typically very sharply peaked
about its maximum. For smaller problems, adap-
tive Monte Carlo integrators, such as vegas, are
effective. For larger problems Monte Carlo sim-
ulation techniques, such as the Metropolis or hy-
brid Monte Carlo methods, can be effective. Still
the cost of evaluating the integrals is often pro-
hibitive, particularly when there are lots of poorly
constrained parameters (which lead to long, nar-
row, high ridges in the probability distribution).
Consequently efficient approximations are useful.

“Constrained curve fitting,” [Lepage et al., Nucl.Phys.B

Proc.Suppl.106(2002) 12]

2023-05-18
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optimal sampling parameters

The distribution obtained from this modified
bootstrap algorithm is not precisely the Bayes
distribution P(p|G). It has additional factors

such as y/det g;; where

_o IG(t; p) OG(t'; p)
1 § : 2
I — 0 ’ 3 12)
9ij B dp; é)/)j (19)

tit”

is a metric induced on p space [ These factors
become constants for sufficiently high statistics
anfd so make no difference in that limit. This
particular factor is interesting, however, because
it makes the measure in p space invariant under
reparameterizations. This suggests that

— 2 e
P'(p|G) x y/det g;; e Xaug/? (20)
might be a better choice for our Bayesian prob-
ability.

The possibility of using MC integration for expectation values
was pointed out long ago, but the approach was deemed
computationally inefficient.

Quasi-MC integration and dimensionality reduction may help,
as well as parameter transformations to sample using a non-
informative (e.g., Jeffrey’s) prior

Sampling bias PDF4LHC Meeting 2022




