CFFs to GPDs

Adam Freese University of Washington June 12, 2023

- **Generalized parton distributions** GPDs are four-variable functions.
- **Compton form factors** CFFs are three-variable functions.
- ► Multiple GPDs exist that give the same CFF.
- ► How do we deal with it? Are GPDs actually measurable?

Generalized parton distributions

- GPDs are formally defined using light cone correlators.
 - Amplitude for a quark being at two spacetime locations.
- ► For quarks (in the light cone gauge):

$$\mathcal{M}^{q}[\mathcal{O}] = \frac{1}{2} \int \frac{\mathrm{d}z}{2\pi} e^{-i(P \cdot n)zx} \langle p' | \bar{q}\left(\frac{nz}{2}\right) \mathcal{O}q\left(-\frac{nz}{2}\right) | p \rangle$$

- ► Analogous definitions exist for gluons.
- \mathcal{O} chosen by which GPD we want; e.g.,
 - $\psi = \gamma^+$ for helicity-independent, leading twist GPDs.
- Each correlator is decomposed into Lorentz structures; for the proton:

$$\mathcal{M}^{q}[\mathbf{M}] = \bar{u}' \left[\mathbf{M} H^{q}(x,\xi,t;Q^{2}) + \frac{i\sigma^{n\Delta}}{2m_{p}} E^{q}(x,\xi,t;Q^{2}) \right] u$$

• The Lorentz-invariant functions of x, ξ , t, and Q^2 are the GPDs.

GPDs: one kind of partonic structure

Figure: M. Diehl, arxiv:1512.01328

The GPD variables

$$\begin{split} x &= \frac{(k+k') \cdot n}{(p+p') \cdot n} \\ \xi &= \frac{(p-p') \cdot n}{(p+p') \cdot n} \\ t &= \Delta^2 = (p'-p)^2 \\ n \text{ defines the light front, i.e., } n \cdot V \equiv V^+ \end{split}$$

- x is *average* momentum fraction of struck parton.
- 2ξ is the **skewness**: momentum fraction lost by struck parton.
- t is the invariant momentum transfer.
- Also depend on resolution scale Q^2 —a hard scale in the process (e.g., photon virtuality)

GPDs in the forward limit

- Several GPDs become PDFs when p' = p, i.e., t = 0 and $\xi = 0$.
- Definition of light cone correlator:

$$\mathcal{M}^{q}[\mathcal{O}] = \frac{1}{2} \int \frac{\mathrm{d}z}{2\pi} e^{-i(P \cdot n)zx} \langle p' | \bar{q}\left(\frac{nz}{2}\right) \mathcal{O}q\left(-\frac{nz}{2}\right) | p \rangle$$

• This is how PDFs are formally defined, provided p' = p.

See e.g., Collins's Foundations of Perturbative QCD.

► For the proton:

$$H^{q}(x, 0, 0; Q^{2}) = q(x; Q^{2})$$

$$\tilde{H}^{q}(x, 0, 0; Q^{2}) = \Delta q(x; Q^{2})$$

Impact parameter PDFs

- Partially spatial structure recovered when $\xi = 0$
- 2D Fourier transform gives 2D spatial structure at fixed light front time
- ► Third dimension is **momentum fraction** *x*

Calculations in figures: AF & Cloët, PRC101 (2020) 035203

- Hard exclusive reactions are used to measure GPDs.
 - **Deeply virtual Compton scattering** (DVCS) to probe quark structure.
 - Deeply virtual meson production (DVMP), *e.g.*, J/ψ or Υ to probe gluon structure.
 - Double DVCS and timelike Compton scattering are other options.
 - …and more!
- Measured at **Jefferson Lab** and the upcoming **Electron Ion Collider**.

$x + \xi$ p y $x - \xi$ p'Deeply virtual Compton scattering $\mathcal{H}(\xi, t; Q^2)$

- **Deeply virtual Compton scattering** (DVCS) is one method to probe GPDs.
- Loop in diagram: x is integrated out
- ► Integrated quantities seen in experiment: **Compton form factors**

$$\mathcal{H}(\xi,t;Q^2) = \int_{-1}^1 \mathrm{d}x \, C(x,\xi) H(x,\xi,t;Q^2) \stackrel{\text{LO}}{=} \int_{-1}^1 \mathrm{d}x \, \left[\frac{1}{\xi - x - i0} \mp \frac{1}{\xi + x - i0} \right] H(x,\xi,t;Q^2)$$

DVCS and GPDs

Shadow GPDs

► Need to invert the relationship:

$$\mathcal{H}(\xi,t;Q^2) = \int_{-1}^{1} \mathrm{d}x \, C(x,\xi) H(x,\xi,t;Q^2)$$

► Shadow GPDs impose a mighty obstacle:

$$\int_{-1}^{1} \mathrm{d}x \, C(x,\xi) H_s(x,\xi,t;Q_0^2) = 0$$

- $H(x,\xi,t,Q_0^2) + H_s(x,\xi,t,Q_0^2)$ gives the same DVCS amplitude at $Q^2 = Q_0^2$.
- Bertone, *et al.*, PRD103 (2021) 114019 (first work on shadows)
- Moffat *et al.*, arxiv:2303.12006 (plots on right)

- ► GPDs are functions of four variables, but ...
- ... Q^2 dependence is fully determined by **evolution equations**:

$$\frac{\mathrm{d}H(x,\xi,t;Q^2)}{\mathrm{d}\log Q^2} = \frac{\alpha_{\rm QCD}}{2\pi} \int \frac{\mathrm{d}y}{y} P\left(\frac{x}{y},\frac{\xi}{y}\right) H(y,\xi,t;Q^2)$$

Evolution

- ► Should exist a unique map between $\mathcal{H}(\xi, t, Q^2)$ [CFF] and $H(x, \xi, t, Q_0^2)$ [GPD].
 - Both are 3-variable functions.
 - Shadow GPDs evolve into non-shadows!
 - Problem solved with infinite-precision data.
 - Real data have uncertainties.

What data do we need?

- Over what kinematic domain?
- ► With what precision?
- Is this even feasible with realistic error bars?

Positivity constraints

Constraints follow from Schwarz inequality:

 $\langle \text{out} | \text{in} \rangle^2 \leq \langle \text{out} | \text{out} \rangle \langle \text{in} | \text{in} \rangle$

combined with overlap formalism.

► GPD implication for spin-half case:

$$H^{q}(x,\xi,t;Q^{2}) - \frac{\xi^{2}}{1-\xi^{2}} E^{q}(x,\xi,t;Q^{2}) \Big|^{2} + \left| \frac{\sqrt{t_{\min} - t}}{2M\sqrt{1-\xi^{2}}} E^{q}(x,\xi,t;Q^{2}) \right|^{2} \leqslant \frac{q(x_{\mathrm{in}};Q^{2}) q(x_{\mathrm{out}};Q^{2})}{1-\xi^{2}} E^{q}(x,\xi,t;Q^{2}) \Big|^{2} \leq \frac{q(x_{\mathrm{in}};Q^{2}) q(x_{\mathrm{out}};Q^{2})}{1-\xi^{2}} E^{q}(x,\xi,t;Q^{2}) \Big|^{2}$$

- ► May be spoiled by renormalization, like PDF positivity
 - Collins, Rogers & Sato, PRD105 (2022) 076010
 - Perhaps positivity can be a "soft constraint"? i.e., not strictly imposed, but cost function imposed during fit …

Analysis of Bertone et al.

Shadow GPDs discovered, first analyzed by Bertone *et al*.

- PRD103 (2021) 114019
- SciPost Phys. Proc. 8 (2022) 107

$$\int_{-1}^{1} \mathrm{d}x \, C(x,\xi) H_s(x,\xi,t;Q_0^2) = 0$$

- ► They discovered a systematic scheme for generating shadow GPDs
 - ▶ via Radon transforms of polynomials with additional constraints
- ► They found evolution insufficient to constrain shadows

Analysis of Moffat et al.

• Construct a GPD as:

 $H = H_{\text{true}} + H_{\text{shadows}}$

where $H_{\rm shadows}(x,\xi,t;Q_0^2)$ is a linear sum of possible shadows.

- Generate Monte Carlo CFF data using $H_{\text{true}}(x, \xi, t; Q_0^2)$
 - Use VGG model as proxy

- Fit $H(x, \xi, t; Q_0^2)$ using coefficients of shadows as parameters.
 - ► We find large uncertainties at large *x*...

Disclosure: I'm on this paper, maybe not impartial presenter here

A closer look at the plots

Eric Moffat, AF, et al., arXiv:2303.12006

- Dark bands are shadows that vanish at $\xi = 0$.
- We realized forward limit needed t = 0 too.
- t = 0 will not happen in CFF measurements.
- Light bands don't force shadows to vanish at $\xi = 0$.

Prognosis

- We analyzed a subset of shadow GPDs.
- Looks like data over large (ξ, Q^2) domain could constrain small (x, ξ) GPDs.
 - ► Add positivity for large *x*.
- Result depends on shadows being small when *x* and ξ are small.
- This is true of every shadow GPD we've found to date
 - Examples on bottom right
 - I'm trying to construct a proof (no progress)
 - Eric has tried finding counter-examples (none found)
- Cautiously optimistic about GPDs being measurable at small ξ
 - Small ξ relevant to tomography

- Stick to observables when extracting
 - e.g., Compton form factors
- ► Use equivalence classes of GPDs
 - ► $H \sim H + H_{\text{shadow}}$
- Other reactions
 - Double DVCS
 - Single diffractive hard exclusive processes

Other paths

- Has different shadows than DVCS
- ► Use lattice results to further constrain GPDs
- Model-testing paradigm
 - Make CFF predictions via models
 - DVCS etc. serve to *rule out* models
 - More measurements scrutinize survivors

Optimize QCF parameters