

- Generalized parton distributions GPDs are four-variable functions.
- Compton form factors CFFs are three-variable functions.
- Multiple GPDs exist that give the same CFF.
- How do we deal with it? Are GPDs actually measurable?
- GPDs are formally defined using light cone correlators.
- Amplitude for a quark being at two spacetime locations.
- For quarks (in the light cone gauge):

$$
\mathcal{M}^{q}[\mathcal{O}]=\frac{1}{2} \int \frac{\mathrm{~d} z}{2 \pi} e^{-i(P \cdot n) z x}\left\langle p^{\prime}\right| \bar{q}\left(\frac{n z}{2}\right) \mathcal{O} q\left(-\frac{n z}{2}\right)|p\rangle
$$

- Analogous definitions exist for gluons.
- \mathcal{O} chosen by which GPD we want; e.g.,
- $九=\gamma^{+}$for helicity-independent, leading twist GPDs.
- Each correlator is decomposed into Lorentz structures; for the proton:

$$
\mathcal{M}^{q}[\not x]=\bar{u}^{\prime}\left[\not \check{n} H^{q}\left(x, \xi, t ; Q^{2}\right)+\frac{i \sigma^{n \Delta}}{2 m_{p}} E^{q}\left(x, \xi, t ; Q^{2}\right)\right] u
$$

- The Lorentz-invariant functions of x, ξ, t, and Q^{2} are the GPDs.

Figure: M. Diehl, arxiv:1512.01328

$$
\begin{aligned}
& x=\frac{\left(k+k^{\prime}\right) \cdot n}{\left(p+p^{\prime}\right) \cdot n} \\
& \xi=\frac{\left(p-p^{\prime}\right) \cdot n}{\left(p+p^{\prime}\right) \cdot n} \\
& t=\Delta^{2}=\left(p^{\prime}-p\right)^{2} \\
& n \text { defines the light front, i.e., } n \cdot V \equiv V^{+}
\end{aligned}
$$

- x is average momentum fraction of struck parton.
- 2ξ is the skewness: momentum fraction lost by struck parton.
- t is the invariant momentum transfer.
- Also depend on resolution scale Q^{2}-a hard scale in the process (e.g., photon virtuality)
- Several GPDs become PDFs when $p^{\prime}=p$, i.e., $t=0$ and $\xi=0$.
- Definition of light cone correlator:

$$
\mathcal{M}^{q}[\mathcal{O}]=\frac{1}{2} \int \frac{\mathrm{~d} z}{2 \pi} e^{-i(P \cdot n) z x}\left\langle p^{\prime}\right| \bar{q}\left(\frac{n z}{2}\right) \mathcal{O}\left(-\frac{n z}{2}\right)|p\rangle
$$

- This is how PDFs are formally defined, provided $p^{\prime}=p$.

See e.g., Collins's Foundations of Perturbative QCD.

- For the proton:

$$
\begin{aligned}
& H^{q}\left(x, 0,0 ; Q^{2}\right)=q\left(x ; Q^{2}\right) \\
& \tilde{H}^{q}\left(x, 0,0 ; Q^{2}\right)=\Delta q\left(x ; Q^{2}\right)
\end{aligned}
$$

Non-skewed GPD $(\xi=0)$

Impact parameter PDF

- Partially spatial structure recovered when $\xi=0$
- 2D Fourier transform gives 2D spatial structure at fixed light front time
- Third dimension is momentum fraction x
- Hard exclusive reactions are used to measure GPDs.
- Deeply virtual Compton scattering (DVCS) to probe quark structure.
- Deeply virtual meson production (DVMP), e.g., J / ψ or Υ to probe gluon structure.
- Double DVCS and timelike Compton scattering are other options.
- ...and more!
- Measured at Jefferson Lab and the upcoming Electron Ion Collider.

Deeply virtual Compton scattering

$$
\mathcal{H}\left(\xi, t ; Q^{2}\right)
$$

Generalized parton distribution

$$
H\left(x, \xi, t ; Q^{2}\right)
$$

- Deeply virtual Compton scattering (DVCS) is one method to probe GPDs.
- Loop in diagram: x is integrated out
- Integrated quantities seen in experiment: Compton form factors

$$
\mathcal{H}\left(\xi, t ; Q^{2}\right)=\int_{-1}^{1} \mathrm{~d} x C(x, \xi) H\left(x, \xi, t ; Q^{2}\right) \xlongequal{\text { LO }} \int_{-1}^{1} \mathrm{~d} x\left[\frac{1}{\xi-x-i 0} \mp \frac{1}{\xi+x-i 0}\right] H\left(x, \xi, t ; Q^{2}\right)
$$

- Need to invert the relationship:

$$
\mathcal{H}\left(\xi, t ; Q^{2}\right)=\int_{-1}^{1} \mathrm{~d} x C(x, \xi) H\left(x, \xi, t ; Q^{2}\right)
$$

- Shadow GPDs impose a mighty obstacle:

$$
\int_{-1}^{1} \mathrm{~d} x C(x, \xi) H_{s}\left(x, \xi, t ; Q_{0}^{2}\right)=0
$$

- $H\left(x, \xi, t, Q_{0}^{2}\right)+H_{s}\left(x, \xi, t, Q_{0}^{2}\right)$ gives the same DVCS amplitude at $Q^{2}=Q_{0}^{2}$.
- Bertone, et al., PRD103 (2021) 114019 (first work on shadows)
- Moffat et al., arxiv:2303.12006 (plots on right)

$\xi=0.5$

Examples of shadow GPDs.

- GPDs are functions of four variables, but ...
- $\ldots Q^{2}$ dependence is fully determined by evolution equations:

$$
\frac{\mathrm{d} H\left(x, \xi, t ; Q^{2}\right)}{\mathrm{d} \log Q^{2}}=\frac{\alpha_{\mathrm{QCD}}}{2 \pi} \int \frac{\mathrm{~d} y}{y} P\left(\frac{x}{y}, \frac{\xi}{y}\right) H\left(y, \xi, t ; Q^{2}\right)
$$

- Should exist a unique map between $\mathcal{H}\left(\xi, t, Q^{2}\right)$ [CFF] and $H\left(x, \xi, t, Q_{0}^{2}\right)$ [GPD].
- Both are 3-variable functions.
- Shadow GPDs evolve into non-shadows!
- Problem solved with infinite-precision data.
- Real data have uncertainties.
- What data do we need?
- Over what kinematic domain?
- With what precision?
- Is this even feasible with realistic error bars?
- Constraints follow from Schwarz inequality:

$$
\left.\left.\langle\text { out }| \text { in }\rangle^{2} \leq\langle\text { out }| \text { out }\right\rangle\langle\text { in }| \text { in }\right\rangle
$$

combined with overlap formalism.

- GPD implication for spin-half case:

$$
\left|H^{q}\left(x, \xi, t ; Q^{2}\right)-\frac{\xi^{2}}{1-\xi^{2}} E^{q}\left(x, \xi, t ; Q^{2}\right)\right|^{2}+\left|\frac{\sqrt{t_{\min }-t}}{2 M \sqrt{1-\xi^{2}}} E^{q}\left(x, \xi, t ; Q^{2}\right)\right|^{2} \leqslant \frac{q\left(x_{\mathrm{in}} ; Q^{2}\right) q\left(x_{\mathrm{out}} ; Q^{2}\right)}{1-\xi^{2}}
$$

- May be spoiled by renormalization, like PDF positivity
- Collins, Rogers \& Sato, PRD105 (2022) 076010
- Perhaps positivity can be a "soft constraint"? i.e., not strictly imposed, but cost function imposed during fit ...
- Shadow GPDs discovered, first analyzed by Bertone et al.
- PRD103 (2021) 114019
- SciPost Phys. Proc. 8 (2022) 107

$$
\int_{-1}^{1} \mathrm{~d} x C(x, \xi) H_{s}\left(x, \xi, t ; Q_{0}^{2}\right)=0
$$

- They discovered a systematic scheme for generating shadow GPDs
- via Radon transforms of polynomials with additional constraints
- They found evolution insufficient to constrain shadows
- Construct a GPD as:

$$
H=H_{\text {true }}+H_{\text {shadows }}
$$

where $H_{\text {shadows }}\left(x, \xi, t ; Q_{0}^{2}\right)$ is a linear sum of possible shadows.

- Generate Monte Carlo CFF data using $H_{\text {true }}\left(x, \xi, t ; Q_{0}^{2}\right)$

- Use VGG model as proxy
- Fit $H\left(x, \xi, t ; Q_{0}^{2}\right)$ using coefficients of shadows as parameters.
- We find large uncertainties at large $x \ldots$

Eric Moffat, AF, et al., arXiv:2303.12006

- Dark bands are shadows that vanish at $\xi=0$.
- We realized forward limit needed $t=0$ too.
- $t=0$ will not happen in CFF measurements.
- Light bands don’t force shadows to vanish at $\xi=0$.

- We analyzed a subset of shadow GPDs.
- Looks like data over large (ξ, Q^{2}) domain could constrain small (x, ξ) GPDs.
- Add positivity for large x.
- Result depends on shadows being small when x and ξ are small.
- This is true of every shadow GPD we've found to date
- Examples on bottom right
- I'm trying to construct a proof (no progress)
- Eric has tried finding counter-examples (none found)
- Cautiously optimistic about GPDs being measurable at small ξ
- Small ξ relevant to tomography

$\xi=0.1$

$\xi=0.5$

- Stick to observables when extracting
- e.g., Compton form factors
- Use equivalence classes of GPDs
- $H \sim H+H_{\text {shadow }}$
- Other reactions
- Double DVCS
- Single diffractive hard exclusive processes
- Has different shadows than DVCS
- Use lattice results to further constrain GPDs
- Model-testing paradigm
- Make CFF predictions via models
- DVCS etc. serve to rule out models
- More measurements scrutinize survivors

