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Motivation: uncertainty in learning

Self driving cars Healthcare Face detection

Security Manufacturing Finance
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Neural Networks: training vs testing

Training on your dataset Testing in reality

Expectation Reality



Uncertainty in 
Machine learning:
 
● Aleatoric 
● Epistemic

Uncertainty in physics
 
● Systematic
● Statistical 
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Uncertainty in physics:
 

● Statistical:
➔ Uncertainty that can be statistically 

determined from input data (std of 
measurements).

● Systematic:
➔ Uncertainty coming from theory or other 

measurements (not statistical).

 

● Aleatoric (data uncertainty):
➔ Uncertainty coming from corrupted 

data (detector noise).

● Epistemic (model uncertainty):
➔ Uncertainty coming from imperfect 

models.
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Bayesian Neural Network

● Introduced for regularization.
● Adopted for UQ – MC Dropout.
● Enabling Dropout during inference

Dropout

Uncertainty Quantification Methods for 
Machine Learning

Deep Ensembles

● Training the same architecture 
several times with different 
initializations.  

● NN with the weights of the layers 
form a probability distribution.  

Ensemblep= 0.5

Figure source: Cabiscol, J.A. (2019). Understanding 
Uncertainty in Bayesian Neural Networks.



Quantifying the Uncertainty of DVCS Cross Sections 

, t = -0.172, Q2 = 1.82, Eb= 5.75

UQ on predicting the cross sections

from the kinematics using:

➔ Deep Ensembles 
➔ Dropout

M. Almaeen, J. Grigsby, J. Hoskins, B. Kriesten, Y. Li, H-W. Lin, S. Liuti arXiv:2207.10766

NNs architecture for DVCS cross sections.



Quantifying the Uncertainty of the CFFs 

xBj = 0.343, t = -0.172, Q2 = 1.82, Eb= 5.75

M. Almaeen, J. Hoskins, B. Kriesten, Y. Li, H-W. Lin, S. Liuti (in progress)

C-VAIM architecture for extracting CFFs.
Random target  latent space z + incorporating the DVCS error bar.

No random targett   latent space z



Sources of the Uncertainty in ML for QCD

1. Experimental 
measurements 

(statistical)

2. Physics 
measurements 

(systematic)

3. ML 
architecture 

4. Training 
procedures
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How can we reduce the model uncertainty?



● Active Learning

○ Collecting sufficient data for modeling is challenging.

○ AL can reduce the number of training samples.

○  AL is basically categorized into two types:

■ Population based AL.

■ Pool based AL.
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➔ Applied to extracting the parton distribution 
function (PDF) parameters from the cross 
sections
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σn 

➔ Applied to extracting the parton distribution 
function (PDF) parameters from the cross 
sections

Reconstructed cross sections 



Summary

➢ Uncertainty quantification methods: Dropout, Deep Ensembles and 

BNNs.

➢ UQ on the DVCS cross sections 

➢ UQ on the CFFs

➢ Reducing the model uncertainty: Active Learning
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