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Motivation: uncertainty in learning
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Self driving cars Healthcare Face detection
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Neural Networks: training vs testing

Training on your dataset Testing in reality

Expectation



. Types of The Uncertainty

Uncertainty in
Machine learning:

e Aleatoric
e Epistemic

Uncertainty in physics

e Systematic
e Statistical
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- Types of The Uncertainty

Uncertainty in Machine
learning:

Aleatoric (data uncertainty):
Uncertainty coming from corrupted
data (detector noise).

Epistemic (model uncertainty):

Uncertainty coming from imperfect
models.

Uncertainty in physics:

Statistical:

Uncertainty that can be statistically
determined from input data (std of
measurements).

Systematic:
Uncertainty coming from theory or other
measurements (not statistical).
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Uncertainty in Machine Uncertainty in physics:
learning:

Aleatoric (data uncertainty): e Statistical:

Epistemic (model uncertainty):| e Systematic:

Uncertainty coming from imperfect - Uncertainty coming from theory or other
models. measurements (not statistical).
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Uncertainty in Machine
learning:

Aleatoric (data uncertainty):

Uncertainty coming from corrupted
data (detector noise).

Epistemic (model uncertainty):

Uncertainty in physics:

Statistical:

- Uncertainty that can be statistically

determined from input data (std of
measurements).

Systematic:
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| Uncertainty Quantification Methods for

Dropout

Introduced for regularization.
Adopted for UQ — MC Dropout.
Enabling Dropout during inference

Machine Learning

Deep Ensembles

Training the same architecture
several times with different
initializations.

Bayesian Neural Network

NN with the weights of the layers
form a probability distribution.

Figure source: Cabiscol, J.A. (2019). Understanding
Uncertainty in Bayesian Neural Networks.



Quantifying the Uncertainty of DVCS Cross Sections

UQ on predicting the cross sections

from the kinematics using:

0.14
-> Deep Ensembles s
> 0.12
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NNs architecture for DVCS cross sections. )

M. Almaeen, J. Grigsby, J. Hoskins, B. Kriesten, Y. Li, H-W. Lin, S. Liuti arXiv:2207.10766



Quantifying the Uncertainty of the CFFs

Xg; = 0.343,t=-0.172,Q% = 1.82, E,= 5.15

CFFs
120 — ’rl;\;ning CFFs
CFFs w/RandomTargets
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C-VAIM architecture for extracting CFFs.

FllilelelyiRel{e[5i —® latent space z + incorporating the DVCS error bar.

M. Almaeen, J. Hoskins, B. Kriesten, Y. Li, H-W. Lin, S. Liuti (in progress) N —elatent space z



1. Experimental
measurements

2. Physics
measurements

(statistical) (systematic)

N

Sources of the Uncertainty in ML for QCD

AN :

3. ML

_ 4. Training
architecture

procedures




Irreducible : Irreducible

1. Experimental
measurements

2. Physics
measurements

(statistical) (systematic)

N

Sources of the Uncertainty in ML for QCD

AN

3. ML

_ 4. Training
architecture

procedures

Reducible Reducible




How can we reduce the uncertainty?



e Active Learning

o Collecting sufficient data for modeling is challenging.
o AL can reduce the number of training samples.
o AL is basically categorized into two types:

m Population based AL.

m Pool based AL.



. ACTive Leqrning Gl={a =0.5, Bu =2.5,a=0.1, Bd= 3.0}

Training data T1

1st level



. ACTive Leqrning Gl={a =0.5, Bu =2.5,a=0.1, Bd= 3.0}

Training data T1

ML

1st level



. ACTive Leqrning Gl={a =0.5, Bu =2.5,a=0.1, Bd= 3.0}

Training data T1

—Jpp-Pred:K1

ML

Testing on G1

1st level



. ACTive Learning Gl={a =0.5, Bu =2.5,a=0.1, Bd= 3.0}

T2

Training data T1

ML

Testing on G1

1st level 2nd level



. ACTive Learning Gl={a =0.5, Bu =25,a,=0.1, Bd= 3.0}

T2

Training data T1

- Pred:K1 - /Training data T1

ML
ML

Testing on G1

1st level 2nd level



. ACfive Leal‘ning Gl={a =0.5, Bu =25,a,=0.1, Bd= 3.0}

T2

Training data T1

Training data T1

—Jpp-Pred:K1

ML

—7pp-Pred:K2

ML

Testing on G1
Testing on G1

1st level 2nd level 3rd level



. ACTive Learning Gl={a =0.5, Bu =25,a,=0.1, Bd= 3.0}

T2

Training data T1

Training data T1

ML

—Jpp-Pred:K1

ML

Testing on G1
Testing on G1




. ACfive LeCII‘ning Gl={a =0.5, Bu =25,a,=0.1, Bd= 3.0}

T2

Training data T1

Training data T1

—Jpp-Pred:K1

ML
ML

Testing on G1
Testing on G1

- /Training data T1

1st level 2nd level 3rd level



. ACfive LeCII‘ning Gl={a =0.5, Bu =25,a,=0.1, Bd= 3.0}

T2

Training data T1

Training data T1

—Jpp-Pred:K1

ML
ML

Testing on G1
Testing on G1

- /Training data T1

1st level 2nd level 3rd level



. ACfive LeCII‘ning Gl={a =0.5, Bu =25,a,=0.1, Bd= 3.0}

T2

Training data T1

Training data T1

—Jpp-Pred:K1

ML
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Pred:K3

Testing on G1
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e Active Learning ...

Mapper

-> Applied to extracting the parton distribution
function (PDF) parameters from the cross
sections

Gl={a =05 B =2.5a=0.1,B =3.0}
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~ ACTive Ledrning Gl={a =0.5, Bu =25,a,=0.1, Bd= 3.0}

-> Applied to extracting the parton distribution
function (PDF) parameters from the cross

sections
Reconstructed cross sections|
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Summary

> Uncertainty quantification methods: Dropout, Deep Ensembles and
BNNSs.

> UQ on the DVCS cross sections

> UQ on the CFFs

> Reducing the model uncertainty: Active Learning
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