# **Proton GPDs** from lattice QCD

### Martha Constantinou



Temple University

### **CNF Workshop on Generalized Parton Distributions and Global Analysis**

June 13, 2023

### Outline

PHYSICAL REVIEW LETTERS 125, 262001 (2020)

Unpolarized and Helicity Generalized Parton Distributions of the Proton within Lattice QCD

Constantia Alexandrou,<sup>1,2</sup> Krzysztof Cichy,<sup>3</sup> Martha Constantinou<sup>0</sup>,<sup>4</sup> Kyriakos Hadjiyiannakou,<sup>1</sup> Karl Jansen,<sup>5</sup> Aurora Scapellato,<sup>3</sup> and Fernanda Steffens<sup>6</sup>

PHYSICAL REVIEW D 105, 034501 (2022)

#### Transversity GPDs of the proton from lattice QCD

Constantia Alexandrou,<sup>1,2</sup> Krzysztof Cichy,<sup>3</sup> Martha Constantinou<sup>,4</sup> Kyriakos Hadjiyiannakou,<sup>1,2</sup> Karl Jansen,<sup>5</sup> Aurora Scapellato,<sup>4</sup> and Fernanda Steffens<sup>6</sup>

**Twist-3 GPDs** 

# Twist-2 GPDs: "traditional" calculations

arXiv:2306.05533v1 [hep-lat] 8 Jun 2023 Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya<sup>1,2</sup>, Krzysztof Cichy<sup>3</sup>, Martha Constantinou<sup>1</sup>, Jack Dodson<sup>1</sup>, Andreas Metz<sup>1</sup>, Aurora Scapellato<sup>1</sup>, Fernanda Steffens<sup>4</sup>

PHYSICAL REVIEW D 106, 114512 (2022)

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks

+ Joshua Miller

Shohini Bhattacharya<sup>®</sup>,<sup>1,\*</sup> Krzysztof Cichy,<sup>2</sup> Martha Constantinou<sup>®</sup>,<sup>3,†</sup> Jack Dodson,<sup>3</sup> Xiang Gao,<sup>4</sup> Andreas Metz,<sup>3</sup> Swagato Mukherjee<sup>®</sup>,<sup>1</sup> Aurora Scapellato,<sup>3</sup> Fernanda Steffens,<sup>5</sup> and Yong Zhao<sup>4</sup>

### Twist-2 GPDs: new approach

# **Motivation for GPDs studies**



1<sub>mom</sub> + 2<sub>coord</sub> tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer

- - GPDs are not well-constrained experimentally:
    - x-dependence extraction is not direct. DVCS amplitude:  $\mathscr{H} = \int_{-\infty}^{+\infty} \frac{H(x,\xi,t)}{x-\xi+i\epsilon} dx$

(SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)

- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Essential to complement the knowledge on GPD from lattice QCD

### **Twist-classification of PDFs, GPDs, TMDs**

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$



### **Twist-classification of PDFs, GPDs, TMDs**

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

| <b>Twist-2</b> $(f_i^{(0)})$ |                                                                             |                                                                         |                                                                                                  |  |  |  |  |  |
|------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Quark<br>Nucleon             | <b>U (</b> γ <sup>+</sup> )                                                 | <b>L (</b> γ <sup>+</sup> γ <sup>5</sup> )                              | T ( $\sigma^{+j}$ )                                                                              |  |  |  |  |  |
| U                            | $\begin{array}{c} H(x,\xi,t)\\ E(x,\xi,t)\\ \text{unpolarized} \end{array}$ |                                                                         |                                                                                                  |  |  |  |  |  |
| L                            |                                                                             | $ \widetilde{H}(x,\xi,t) \\ \widetilde{E}(x,\xi,t) \\ \text{helicity} $ |                                                                                                  |  |  |  |  |  |
| т                            |                                                                             |                                                                         | $\begin{array}{c} H_T, E_T\\ \widetilde{H}_T, \widetilde{E}_T\\ \text{transversity} \end{array}$ |  |  |  |  |  |
| Probabilistic interpretation |                                                                             |                                                                         |                                                                                                  |  |  |  |  |  |
| U                            | $\bigcirc$                                                                  |                                                                         | Nucleon spin                                                                                     |  |  |  |  |  |

L

Т

T

y quark spin

### **Twist-classification of PDFs, GPDs, TMDs**

| $f_i = f_i^{(0)} + \frac{f_i^{(1)}}{\Omega} + \frac{f_i^{(2)}}{\Omega^2} \cdots$ |                                                                             |                                                                                                      |                                                                                                  |       |                     |                          |                                                                        |                                     |                             |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------|---------------------|--------------------------|------------------------------------------------------------------------|-------------------------------------|-----------------------------|
| <b>Twist-2</b> $(f_i^{(0)})$ <b>Wist-3</b> $(f_i^{(1)})$                         |                                                                             |                                                                                                      |                                                                                                  |       |                     |                          |                                                                        |                                     |                             |
| Quark<br>Nucleon                                                                 | <b>U (</b> γ <sup>+</sup> )                                                 | <b>L (</b> γ <sup>+</sup> γ <sup>5</sup> )                                                           | T ( $\sigma^{+j}$ )                                                                              |       | <i>O</i><br>Nucleon | $\gamma^j$               | $\gamma^j \gamma^5$                                                    | $\sigma^{jk}$                       | Selected                    |
| U                                                                                | $\begin{array}{c} H(x,\xi,t)\\ E(x,\xi,t)\\ \text{unpolarized} \end{array}$ |                                                                                                      |                                                                                                  |       | U                   | $G_1, G_2$<br>$G_3, G_4$ |                                                                        |                                     |                             |
| L                                                                                |                                                                             | $ \begin{array}{c} \widetilde{H}(x,\xi,t) \\ \widetilde{E}(x,\xi,t) \\ \text{helicity} \end{array} $ |                                                                                                  |       | L                   |                          | $\widetilde{G}_1, \widetilde{G}_2 \\ \widetilde{G}_3, \widetilde{G}_4$ |                                     |                             |
| т                                                                                |                                                                             |                                                                                                      | $\begin{array}{c} H_T, E_T\\ \widetilde{H}_T, \widetilde{E}_T\\ \text{transversity} \end{array}$ |       | т                   |                          |                                                                        | $H'_{2}(x,\xi,t)$ $E'_{2}(x,\xi,t)$ |                             |
| Prot                                                                             | abilistic                                                                   | interpret                                                                                            | ation                                                                                            |       |                     |                          |                                                                        |                                     | -                           |
| U                                                                                | $\bigcirc$                                                                  |                                                                                                      | Nucleon sp                                                                                       | oin 🖈 | Lack d              | lensity ir               | terpretat                                                              | tion, but                           | can be <mark>sizable</mark> |
| C                                                                                |                                                                             |                                                                                                      | quark spin                                                                                       | ı   ★ | Kinem               | atically s               | suppress                                                               | ed                                  |                             |

- Difficult to isolate experimentally
- **★** Theoretically: contain  $\delta(x)$  singularities
- ★ Contain info on quark-gluon-quark correlators

L

Т

'ת'

### **Accessing information on GPDs**





### **Accessing information on GPDs**



### ★ Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

 $\langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$ 

Wilson line

$$\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N}\widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N}\widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht},$$



### **Accessing information on GPDs**



Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

 $\langle N(P_f) | \overline{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$ 

Wilson line

$$\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N}\widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N}\widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht},$$





# Through non-local matrix elements of fast-moving hadrons



### **Access of GPDs on a Euclidean Lattice**

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$\tilde{q}_{\Gamma}^{\text{GPD}}(x,t,\xi,P_3,\mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$$

$$\Delta = P_f - P_i$$
$$t = \Delta^2 = -Q^2$$
$$\xi = \frac{Q_3}{2P_3}$$



# Access of GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons





# **Access of GPDs on a Euclidean Lattice**

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons



# **Parameters of calculations**

### ★ Nf=2+1+1 twisted mass fermions with a clover term;

#### [Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

| Name     | eta   | $N_{f}$ | $L^3 \times T$   | $a~[{ m fm}]$ | $M_{\pi}$      | $m_{\pi}L$ |
|----------|-------|---------|------------------|---------------|----------------|------------|
| cA211.32 | 1.726 | u,d,s,c | $32^3 \times 64$ | 0.093         | $260 { m MeV}$ | 4          |

| frame | $P_3$ [GeV] | $\mathbf{\Delta}\left[rac{2\pi}{L} ight]$ | $-t \; [\text{GeV}^2]$ | ξ | $N_{\rm ME}$ | $N_{ m confs}$ | $N_{ m src}$ | $N_{ m tot}$ |
|-------|-------------|--------------------------------------------|------------------------|---|--------------|----------------|--------------|--------------|
| N/A   | $\pm 1.25$  | (0,0,0)                                    | 0                      | 0 | 2            | 731            | 16           | 23392        |
| symm  | $\pm 0.83$  | $(\pm 2,0,0), (0,\pm 2,0)$                 | 0.69                   | 0 | 8            | 67             | 8            | 4288         |
| symm  | $\pm 1.25$  | $(\pm 2,0,0), (0,\pm 2,0)$                 | 0.69                   | 0 | 8            | 249            | 8            | 15936        |
| symm  | $\pm 1.67$  | $(\pm 2,0,0), (0,\pm 2,0)$                 | 0.69                   | 0 | 8            | 294            | 32           | 75264        |
| symm  | $\pm 1.25$  | $(\pm 2,\pm 2,0)$                          | 1.39                   | 0 | 16           | 224            | 8            | 28672        |
| symm  | $\pm 1.25$  | $(\pm 4,0,0), (0,\pm 4,0)$                 | 2.76                   | 0 | 8            | 329            | 32           | 84224        |
| asymm | $\pm 1.25$  | $(\pm 1,0,0), (0,\pm 1,0)$                 | 0.17                   | 0 | 8            | 429            | 8            | 27456        |
| asymm | $\pm 1.25$  | $(\pm 1,\pm 1,0)$                          | 0.33                   | 0 | 16           | 194            | 8            | 12416        |
| asymm | $\pm 1.25$  | $(\pm 2,0,0), (0,\pm 2,0)$                 | 0.64                   | 0 | 8            | 429            | 8            | 27456        |
| asymm | $\pm 1.25$  | $(\pm 1,\pm 2,0), (\pm 2,\pm 1,0)$         | 0.80                   | 0 | 16           | 194            | 8            | 12416        |
| asymm | $\pm 1.25$  | $(\pm 2,\pm 2,0)$                          | 1.16                   | 0 | 16           | 194            | 8            | 24832        |
| asymm | $\pm 1.25$  | $(\pm 3,0,0), (0,\pm 3,0)$                 | 1.37                   | 0 | 8            | 429            | 8            | 27456        |
| asymm | $\pm 1.25$  | $(\pm 1, \pm 3, 0), (\pm 3, \pm 1, 0)$     | 1.50                   | 0 | 16           | 194            | 8            | 12416        |
| asymm | $\pm 1.25$  | $(\pm 4,0,0), (0,\pm 4,0)$                 | 2.26                   | 0 | 8            | 429            | 8            | 27456        |





# **Parameters of calculations**

### ★ Nf=2+1+1 twisted mass fermions with a clover term;

#### [Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

| Name     | eta   | $N_{f}$ | $L^3 \times T$   | $a~[{ m fm}]$ | $M_{\pi}$      | $m_{\pi}L$ |
|----------|-------|---------|------------------|---------------|----------------|------------|
| cA211.32 | 1.726 | u,d,s,c | $32^3 \times 64$ | 0.093         | $260 { m MeV}$ | 4          |

| frame | $P_3$ [GeV] | $\mathbf{\Delta}\left[rac{2\pi}{L} ight]$ | $-t \; [{\rm GeV}^2]$ | ξ | $N_{\mathrm{ME}}$ | $N_{ m confs}$ | $N_{ m src}$ | $N_{ m tot}$ |
|-------|-------------|--------------------------------------------|-----------------------|---|-------------------|----------------|--------------|--------------|
| N/A   | $\pm 1.25$  | (0,0,0)                                    | 0                     | 0 | 2                 | 731            | 16           | 23392        |
| symm  | $\pm 0.83$  | $(\pm 2,0,0), (0,\pm 2,0)$                 | 0.69                  | 0 | 8                 | 67             | 8            | 4288         |
| symm  | $\pm 1.25$  | $(\pm 2,0,0), (0,\pm 2,0)$                 | 0.69                  | 0 | 8                 | 249            | 8            | 15936        |
| symm  | $\pm 1.67$  | $(\pm 2,0,0), (0,\pm 2,0)$                 | 0.69                  | 0 | 8                 | 294            | 32           | 75264        |
| symm  | $\pm 1.25$  | $(\pm 2,\pm 2,0)$                          | 1.39                  | 0 | 16                | 224            | 8            | 28672        |
| symm  | $\pm 1.25$  | $(\pm 4,0,0), (0,\pm 4,0)$                 | 2.76                  | 0 | 8                 | 329            | 32           | 84224        |
| asymm | $\pm 1.25$  | $(\pm 1,0,0), (0,\pm 1,0)$                 | 0.17                  | 0 | 8                 | 429            | 8            | 27456        |
| asymm | $\pm 1.25$  | $(\pm 1,\pm 1,0)$                          | 0.33                  | 0 | 16                | 194            | 8            | 12416        |
| asymm | $\pm 1.25$  | $(\pm 2,0,0), (0,\pm 2,0)$                 | 0.64                  | 0 | 8                 | 429            | 8            | 27456        |
| asymm | $\pm 1.25$  | $(\pm 1,\pm 2,0), (\pm 2,\pm 1,0)$         | 0.80                  | 0 | 16                | 194            | 8            | 12416        |
| asymm | $\pm 1.25$  | $(\pm 2,\pm 2,0)$                          | 1.16                  | 0 | 16                | 194            | 8            | 24832        |
| asymm | $\pm 1.25$  | $(\pm 3,0,0), (0,\pm 3,0)$                 | 1.37                  | 0 | 8                 | 429            | 8            | 27456        |
| asymm | $\pm 1.25$  | $(\pm 1, \pm 3, 0), (\pm 3, \pm 1, 0)$     | 1.50                  | 0 | 16                | 194            | 8            | 12416        |
| asymm | $\pm 1.25$  | $(\pm 4,0,0), (0,\pm 4,0)$                 | 2.26                  | 0 | 8                 | 429            | 8            | 27456        |







Symmetric frame very expensive computationally



# **Traditional calculations of GPDs**

#### PHYSICAL REVIEW LETTERS 125, 262001 (2020)

#### Unpolarized and Helicity Generalized Parton Distributions of the Proton within Lattice QCD

Constantia Alexandrou,<sup>1,2</sup> Krzysztof Cichy,<sup>3</sup> Martha Constantinou<sup>®</sup>,<sup>4</sup> Kyriakos Hadjiyiannakou,<sup>1</sup> Karl Jansen,<sup>5</sup> Aurora Scapellato,<sup>3</sup> and Fernanda Steffens<sup>6</sup>

#### PHYSICAL REVIEW D 105, 034501 (2022)

#### Transversity GPDs of the proton from lattice QCD

Constantia Alexandrou,<sup>1,2</sup> Krzysztof Cichy,<sup>3</sup> Martha Constantinou<sup>®</sup>,<sup>4</sup> Kyriakos Hadjiyiannakou,<sup>1,2</sup> Karl Jansen,<sup>5</sup> Aurora Scapellato,<sup>4</sup> and Fernanda Steffens<sup>6</sup>







[C. Alexandrou et al., PRL 125, 262001 (2020)]





[C. Alexandrou et al., PRL 125, 262001 (2020)]

- **ERBL/DGLAP:** Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$  (formalism breaks down)
- ★  $x \rightarrow 1$  region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]





[C. Alexandrou et al., PRL 125, 262001 (2020)]

- **ERBL/DGLAP:** Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$  (formalism breaks down)
- ★  $x \rightarrow 1$  region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
  - *t*-dependence vanishes at large-*x*
  - H(x,0) asymptotically equal to  $f_1(x)$



[C. Alexandrou et al., PRL 125, 262001 (2020)]

- **ERBL/DGLAP:** Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$  (formalism breaks down)
- ★  $x \rightarrow 1$  region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
  - *t*-dependence vanishes at large-*x*
  - H(x,0) asymptotically equal to  $f_1(x)$





[C. Alexandrou et al., PRL 125, 262001 (2020)]

- **ERBL/DGLAP:** Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$  (formalism breaks down)
- ★  $x \rightarrow 1$  region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
  - *t*-dependence vanishes at large-*x*

• 
$$H(x,0)$$
 asymptotically equal to  $f_1(x)$ 



★ Qualitative understanding of GPDs and their relations

4

3

2

1

0

★ Qualitative understanding of ERBL and DGLAP regions



M. Constantinou, CNF-GPDs June 2023

## **New parametrization of GPDs**

#### PHYSICAL REVIEW D 106, 114512 (2022)

### Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks

Shohini Bhattacharya<sup>®</sup>,<sup>1,\*</sup> Krzysztof Cichy,<sup>2</sup> Martha Constantinou<sup>®</sup>,<sup>3,†</sup> Jack Dodson,<sup>3</sup> Xiang Gao,<sup>4</sup> Andreas Metz,<sup>3</sup> Swagato Mukherjee<sup>®</sup>,<sup>1</sup> Aurora Scapellato,<sup>3</sup> Fernanda Steffens,<sup>5</sup> and Yong Zhao<sup>4</sup>



### $\star \gamma^+$ inspired parametrization is prohibitively expensive

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[ \gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$



### $\star \gamma^+$ inspired parametrization is prohibitively expensive

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[ \gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

### ★ Lorentz invariant parametrization

$$F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[ \frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

 $A_i$ : - Lorentz invariant amplitudes

- have definite symmetries



### $\star \gamma^+$ inspired parametrization is prohibitively expensive

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[ \gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

### ★ Lorentz invariant parametrization

$$F_{\lambda,\lambda'}^{\mu} = \bar{u}(p',\lambda') \left[ \frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

 $A_i$ : - Lorentz invariant amplitudes - have definite symmetries

Two decompositions can be related

$$\mathcal{H}_0^s(A_i^s;z) = A_1 + rac{z(\Delta_1^2 + \Delta_2^2)}{2P_3}A_6\,,$$

$$\mathcal{E}_0^s(A_i^s;z) = -A_1 - \frac{m^2 z}{P_3} A_4 + 2A_5 - \frac{z \left(4E^2 + \Delta_1^2 + \Delta_2^2\right)}{2P_3} A_6$$



### $\star \gamma^+$ inspired parametrization is prohibitively expensive

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[ \gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

### ★ Lorentz invariant parametrization

$$F_{\lambda,\lambda'}^{\mu} = \bar{u}(p',\lambda') \left[ \frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$

 $A_i$ : - Lorentz invariant amplitudes - have definite symmetries

Two decompositions can be related

$$\mathcal{H}_0^s(A_i^s;z) = A_1 + rac{z(\Delta_1^2 + \Delta_2^2)}{2P_3}A_6 \,,$$

$$\mathcal{E}_0^s(A_i^s;z) = -A_1 - \frac{m^2 z}{P_3} A_4 + 2A_5 - \frac{z \left(4E^2 + \Delta_1^2 + \Delta_2^2\right)}{2P_3} A_6$$

Light-cone GPDs using lattice correlators in non-symmetric frames





# **Theoretical setup**

 $F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[ \frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$ 

### Goals

- (A)  $A_i$  are to the standard H, E GPDs  $\mathcal{H}_0^s(A_i^s; z) = A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3}A_6$
- (B) Extraction of standard GPDs using  $A_i$  obtained from any frame
- (C) quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone:



# **Theoretical setup**

 $F^{\mu}_{\lambda,\lambda'} = \bar{u}(p',\lambda') \left[ \frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$ 

### Goals

- (A)  $A_i$  are to the standard H, E GPDs  $\mathcal{H}_0^s(A_i^s; z) = A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3}A_6$
- (B) Extraction of standard GPDs using  $A_i$  obtained from any frame
- (C) quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone:

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = A_1 + \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3$$

$$E(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = -A_1 - \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3 + 2A_5 + 2P_{avg,s/a} \cdot zA_6 + 2\Delta_{s/a} \cdot zA_8$$



# **Theoretical setup**

$$F_{\lambda,\lambda'}^{\mu} = \bar{u}(p',\lambda') \left[ \frac{P^{\mu}}{M} A_1 + z^{\mu} M A_2 + \frac{\Delta^{\mu}}{M} A_3 + i\sigma^{\mu z} M A_4 + \frac{i\sigma^{\mu \Delta}}{M} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{M} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{M} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{M} A_8 \right] u(p,\lambda)$$
Goals

- (A)  $A_i$  are to the standard H, E GPDs  $\mathcal{H}_0^s(A_i^s; z) = A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3}A_6$
- (B) Extraction of standard GPDs using  $A_i$  obtained from any frame
- (C) quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone:

$$H(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = A_1 + \frac{\Delta_{s/a} \cdot z}{P_{avg, s/a} \cdot z} A_3$$

$$E(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2) = -A_1 - \frac{\Delta_{s/a} \cdot z}{P_{avg,s/a} \cdot z} A_3 + 2A_5 + 2P_{avg,s/a} \cdot zA_6 + 2\Delta_{s/a} \cdot zA_8$$

(A) Proof-of-concept calculation ( $\xi = 0$ ):

- symmetric frame:  $\vec{p}_f^s = \vec{P} + \frac{\vec{Q}}{2}, \quad \vec{p}_i^s = \vec{P} \frac{\vec{Q}}{2} \quad -t^s = \vec{Q}^2 = 0.69 \, GeV^2$
- asymmetric frame:  $\vec{p}_f^a = \vec{P}$ ,  $\vec{p}_i^a = \vec{P} \vec{Q}$   $t^a = -\vec{Q}^2 + (E_f E_i)^2 = 0.65 \, GeV^2$

# Comparison of $A_i$ in two frames



- ★  $A_1, A_5$  dominant contributions
- **★** Full agreement in two frames for both Re and Im parts of  $A_1, A_5$
- ★  $A_3, A_4, A_8$  zero at  $\xi = 0$
- ★  $A_2, A_6, A_7$  suppressed (at least for this kinematic setup and  $\xi = 0$ )

# **GPDs in terms of** $A_i$

Non LI definitions (agreement not theoretically expected)



### LI definition (agreement anticipated theoretically)

T



# **GPDs** in terms of $A_i$

Non LI definitions (agreement not theoretically expected)



M. Constantinou, CNF-GPDs June 2023

# H, E light-cone GPDs

- quasi-GPDs transformed to momentum space
- ★ Matching formalism to 1 loop accuracy level
- +/-x correspond to quark and anti-quark region

★ Anti-quark region susceptible to systematic uncertainties.



★ Similar analysis for helicity GPDs

# H, E light-cone GPDs

- quasi-GPDs transformed to momentum space
- ★ Matching formalism to 1 loop accuracy level



+/-x correspond to quark and anti-quark region

Several values of -t accessible at once

Anti-quark region susceptible to systematic uncertainties.



★ Similar analysis for helicity GPDs

# **Exploration of twist-3 GPDs**

arXiv:2306.05533v1 [hep-lat] 8 Jun 2023

### Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya<sup>1,2</sup>, Krzysztof Cichy<sup>3</sup>, Martha Constantinou<sup>1</sup>, Jack Dodson<sup>1</sup>, Andreas Metz<sup>1</sup>, Aurora Scapellato<sup>1</sup>, Fernanda Steffens<sup>4</sup>



$$\begin{split} F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) &= \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \bigg[ P^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{0}}F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu}\frac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\widetilde{E}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp}\frac{\gamma_{5}}{2m}F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma^{\mu}_{\perp}\gamma_{5}F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) \\ &+ \Delta^{\mu}_{\perp}\frac{\gamma^{3}\gamma_{5}}{P^{3}}F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon^{\mu\nu}_{\perp}\Delta_{\nu}\frac{\gamma^{3}}{P^{3}}F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \bigg] u(p_{i},\lambda) \end{split}$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]
 [F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]



$$F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) = \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \left[ P^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{0}}F_{\widetilde{H}}(x,\xi,t;P^{3}) + P^{\mu}\frac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\widetilde{E}}(x,\xi,t;P^{3}) + \Delta_{\perp}^{\mu}\frac{\gamma_{5}}{2m}F_{\widetilde{E}+\widetilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma_{\perp}^{\mu}\gamma_{5}F_{\widetilde{H}+\widetilde{G}_{2}}(x,\xi,t;P^{3}) + \Delta_{\perp}^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{3}}F_{\widetilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon_{\perp}^{\mu\nu}\Delta_{\nu}\frac{\gamma^{3}}{P^{3}}F_{\widetilde{G}_{4}}(x,\xi,t;P^{3}) \right] u(p_{i},\lambda)$$
[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]



0.5

x

0.6

0.7

0.8

0.9

6

2

n

Ыпр

0.1

0.2

0.3

0.4

$$F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) = \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \left[ P^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{0}}F_{\tilde{H}}(x,\xi,t;P^{3}) + P^{\mu}\frac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\tilde{E}}(x,\xi,t;P^{3}) + \Delta_{\perp}^{\mu}\frac{\gamma_{5}}{2m}F_{\tilde{E}+\tilde{G}_{1}}(x,\xi,t;P^{3}) + \gamma_{\perp}^{\mu}\gamma_{5}F_{\tilde{H}+\tilde{G}_{2}}(x,\xi,t;P^{3}) + \Delta_{\perp}^{\mu}\frac{\gamma_{5}}{P^{3}}F_{\tilde{G}_{3}}(x,\xi,t;P^{3}) + i\varepsilon_{\perp}^{\mu\nu}\Delta_{\nu}\frac{\gamma^{3}}{P^{3}}F_{\tilde{G}_{4}}(x,\xi,t;P^{3}) \right] u(p_{i},\lambda)$$

$$ID. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372] [F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]$$

$$f^{1}_{-1} dx \tilde{H}(x,\xi,t) = G_{A}(t), \quad \int_{-1}^{1} dx \tilde{E}(x,\xi,t) = G_{P}(t) + \int_{-1}^{1} dx \tilde{G}_{i}(x,\xi,t) = 0, \quad i = 1, 2, 3, 4$$

 $\int dx \, x \, \widetilde{G}_3 = \frac{\xi}{4} G_E(t)$ 

[S. Bhattacharya et al., PRD 102 (2020) 11] (Editors Highlight)

6

4

2

0

']['

0.1

8

6

4

2

0

0.02 ·

0.01

-0.02

-0.03 -

Щ

Ó

 $\begin{matrix} 0.00 \\ \mathrm{G}[\mathrm{F}_{\mathrm{G}_{3}}^{\mathbb{G}} \end{matrix} \end{matrix} \\ 10.0- \end{matrix}$ 0.00 - 
$$F^{[\gamma^{\mu}\gamma_{5}]}(x,\Delta;P^{3}) = \frac{1}{2P^{3}}\bar{u}(p_{f},\lambda') \left[ P^{\mu}\frac{\gamma^{3}\gamma_{5}}{P^{0}}F_{\bar{H}}(x,\xi,t;P^{3}) + P^{\mu}\frac{\Delta^{3}\gamma_{5}}{2mP^{0}}F_{\bar{E}}(x,\xi,t;P^{3}) + \Delta_{\perp}^{\mu}\gamma_{5}F_{\bar{H}+\bar{G}_{2}}(x,\xi,t;P^{3}) + \Delta_{\mu$$

M. Constantinou, CNF-GPDs June 2023













**\star** Direct access to  $\widetilde{E}$ -GPD not possible for zero skewness

**\star** Glimpse into  $\widetilde{E}$ -GPD through twist-3 :



**\star** Direct access to  $\widetilde{E}$ -GPD not possible for zero skewness

**\star** Glimpse into  $\widetilde{E}$ -GPD through twist-3 :



 $\star$  Sizable contributions as expected

$$\int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) = G_P(t)$$
$$\int_{-1}^{1} dx \, \widetilde{G}_i(x,\xi,t) = 0, \quad i = 1,2,3,4$$



**\star** Direct access to  $\widetilde{E}$ -GPD not possible for zero skewness

**\star** Glimpse into  $\widetilde{E}$ -GPD through twist-3 :





★ Sizable contributions as expected

$$\int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) = G_P(t)$$
$$\int_{-1}^{1} dx \, \widetilde{G}_i(x,\xi,t) = 0, \quad i = 1, 2, 3, 4$$

★  $\widetilde{G}_4$  very small; no theoretical argument to be zero

$$\int_{-1}^{1} dx \, x \, \widetilde{G}_4(x,\xi,t) = \frac{1}{4} G_E$$

T

### **Consistency checks**

### ★ Norms satisfied

| GPD                               | $P_3 = 0.83 \; [\mathrm{GeV}]$ | $P_3 = 1.25 \; [{ m GeV}]$    | $P_3 = 1.67 \; [{ m GeV}]$    | $P_3 = 1.25 \; [{ m GeV}]$    | $P_3 = 1.25 \; [{ m GeV}]$    |
|-----------------------------------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
|                                   | $-t = 0.69 \; [\text{GeV}^2]$  | $-t = 0.69 \; [\text{GeV}^2]$ | $-t = 0.69 \; [\text{GeV}^2]$ | $-t = 1.38 \; [\text{GeV}^2]$ | $-t = 2.76 \; [\text{GeV}^2]$ |
| $\widetilde{H}$                   | 0.741(21)                      | 0.712(27)                     | 0.802(48)                     | 0.499(21)                     | 0.281(18)                     |
| $\widetilde{H} + \widetilde{G}_2$ | 0.719(25)                      | 0.750(33)                     | 0.788(70)                     | 0.511(36)                     | 0.336(34)                     |

Alternative decomposition (LI) numerically confirmed [Fernanda Steffens]

$$F_{\widetilde{H}+\widetilde{G}_{2}} = \frac{1}{2m^{2}} \frac{z_{3}P_{0}^{2}(\Delta_{\perp})^{2}}{P_{3}} + A_{2} \qquad F_{\widetilde{G}_{3}} = \frac{1}{2m^{2}} \left( z_{3}P_{0}^{2}\Delta_{3} - z_{3}P_{3}P_{0}\Delta_{0} \right) A_{1} - z_{3}P_{3}A_{8}$$

$$F_{\widetilde{E}+\widetilde{G}_{1}} = \frac{2z_{3}P_{0}^{2}}{P_{3}} + 2A_{5} \qquad F_{\widetilde{G}_{3}} = \frac{1}{m^{2}} \left( z_{3}P_{0}P_{3}^{2} - z_{3}P_{0}^{3} \right) A_{1}$$



### **Consistency checks**

### ★ Norms satisfied

| GPD                               | $P_3=0.83~[{\rm GeV}]$        | $P_3 = 1.25 \; [\text{GeV}]$  | $P_3 = 1.67 \; [{ m GeV}]$    | $P_3 = 1.25 \; [{ m GeV}]$    | $P_3 = 1.25 \; [{ m GeV}]$    |
|-----------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
|                                   | $-t = 0.69 \; [\text{GeV}^2]$ | $-t = 0.69 \; [\text{GeV}^2]$ | $-t = 0.69 \; [\text{GeV}^2]$ | $-t = 1.38 \; [\text{GeV}^2]$ | $-t = 2.76 \; [\text{GeV}^2]$ |
| $\widetilde{H}$                   | 0.741(21)                     | 0.712(27)                     | 0.802(48)                     | 0.499(21)                     | 0.281(18)                     |
| $\widetilde{H} + \widetilde{G}_2$ | 0.719(25)                     | 0.750(33)                     | 0.788(70)                     | 0.511(36)                     | 0.336(34)                     |

Alternative decomposition (LI) numerically confirmed [Fernanda Steffens]

$$F_{\widetilde{H}+\widetilde{G}_{2}} = \frac{1}{2m^{2}} \frac{z_{3}P_{0}^{2}(\Delta_{\perp})^{2}}{P_{3}} + A_{2} \qquad F_{\widetilde{G}_{3}} = \frac{1}{2m^{2}} \left( z_{3}P_{0}^{2}\Delta_{3} - z_{3}P_{3}P_{0}\Delta_{0} \right) A_{1} - z_{3}P_{3}A_{8}$$

$$F_{\widetilde{E}+\widetilde{G}_{1}} = \frac{2z_{3}P_{0}^{2}}{P_{3}} + 2A_{5} \qquad F_{\widetilde{G}_{3}} = \frac{1}{m^{2}} \left( z_{3}P_{0}P_{3}^{2} - z_{3}P_{0}^{3} \right) A_{1}$$

**Consistency checks show encouraging results** 



How to lattice QCD data fit into the overall effort for hadron tomography





How to lattice QCD data fit into the overall effort for hadron tomography

**★** Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and  $\xi$  dependence







How to lattice QCD data fit into the overall effort for hadron tomography

**★** Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and  $\xi$  dependence



- 1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
- 2. Lattice QCD calculations of GPDs and related structures
- 3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification



### Synergies: constraints & predictive power of lattice QCD



M. Constantinou, CNF-GPDs June 2023

### Summary

★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV

New proposal for Lorentz invariant decomposition has great advantages:
 significant reduction of computational cost

- access to a broad range of t and  $\xi$ 

**Future calculations have the potential to transform the field of GPDs** 

- ★ Mellin moments can be extracted utilizing quasi-GPDs data
- **Synergy with phenomenology is an exciting prospect!**



## Summary

★ Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV

New proposal for Lorentz invariant decomposition has great advantages:
 significant reduction of computational cost

- access to a broad range of t and  $\xi$ 

★ Future calculations have the potential to transform the field of GPDs

- ★ Mellin moments can be extracted utilizing quasi-GPDs data
- ★ Synergy with phenomenology is an exciting prospect!







Office of

Science

DOE Early Career Award (NP) Grant No. DE-SC0020405

# Helicity quasi-GPDs

- ★ Lorentz-invariant decomposition applicable to helicity case
- **At**  $\xi = 0$  only  $\widetilde{H}$  is accessible directly ( $\widetilde{E}$  accessible from parametrization of the *t* dependence)



# Helicity quasi-GPDs

- ★ Lorentz-invariant decomposition applicable to helicity case
- **At**  $\xi = 0$  only  $\widetilde{H}$  is accessible directly ( $\widetilde{E}$  accessible from parametrization of the *t* dependence)

- $\star$  All values of t obtained at the cost of one
- **★** Preliminary analysis very encouraging!





# Helicity quasi-GPDs

- ★ Lorentz-invariant decomposition applicable to helicity case
- **At**  $\xi = 0$  only  $\widetilde{H}$  is accessible directly ( $\widetilde{E}$  accessible from parametrization of the *t* dependence)



- $\star$  All values of t obtained at the cost of one
- **Preliminary analysis very encouraging!**







 ★ Understanding of systematic effects through sum rules

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_3) = \widetilde{A}_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{E}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_3) = 0$$

$$\int_{-1}^{1} dx \, x \, H_T(x,\xi,t) = A_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, E_T(x,\xi,t) = B_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{H}_T(x,\xi,t) = \widetilde{A}_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$



 Understanding of systematic effects through sum rules

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_3) = \widetilde{A}_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{E}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_3) = 0$$

$$\int_{-1}^{1} dx \, x \, H_T(x,\xi,t) = A_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, E_T(x,\xi,t) = B_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{H}_T(x,\xi,t) = \widetilde{A}_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$

**Sum rules exist** for quasi-GPDs [S. Bhattacharya et al., PRD 102, 054021 (2020)]

י<u>ו</u>ר'

 ★ Understanding of systematic effects through sum rules

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t)$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_3) = \widetilde{A}_{T10}(t)$$

$$\int_{-1}^{1} dx \, \widetilde{E}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_3) = 0 \, .$$

$$\int_{-1}^{1} dx \, x \, H_T(x,\xi,t) = A_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, E_T(x,\xi,t) = B_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{H}_T(x,\xi,t) = \widetilde{A}_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$

,

Sum rules exist for quasi-GPDs [S. Bhattacharya et al., PRD 102, 054021 (2020)]

★ Lattice data on transversity GPDs

$$\int_{-2}^{2} dx H_{Tq}(x, 0, -0.69 \,\text{GeV}^2, P_3) = \{0.65(4), 0.64(6), 0.81(10)\}, \quad \int_{-2}^{2} dx H_{Tq}(x, \frac{1}{3}, -1.02 \,\text{GeV}^2, 1.25 \,\text{GeV}) = 0.49(5),$$

$$\int_{-1}^{1} dx \, H_T(x, 0, -0.69 \,\text{GeV}^2) = \{0.69(4), 0.67(6), 0.84(10)\}, \quad \int_{-1}^{1} dx \, H_T(x, \frac{1}{3}, -1.02 \,\text{GeV}^2) = 0.45(4),$$

$$\int_{-1}^{1} dx \, x \, H_T(x, 0, -0.69 \,\text{GeV}^2) = \{0.20(2), 0.21(2), 0.24(3)\}, \quad \int_{-1}^{1} dx \, x \, H_T(x, \frac{1}{3}, -1.02 \,\text{GeV}^2) = 0.15(2).$$

 $A_{T10}(-0.69 \,\mathrm{GeV}^2) = \{0.65(4), 0.65(6), 0.82(10)\},\$ 

 $A_{T10}(-1.02 \,\mathrm{GeV}^2) = 0.49(5)$ 



 ★ Understanding of systematic effects through sum rules

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t)$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_3) = \widetilde{A}_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{E}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_3) = 0 \, .$$

$$\int_{-1}^{1} dx \, x \, H_T(x,\xi,t) = A_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, E_T(x,\xi,t) = B_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{H}_T(x,\xi,t) = \widetilde{A}_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$

**★** Sum rules exist for quasi-GPDs  $\int_{-1}^{1} dx \hat{H}$ [S. Bhattacharya et al., PRD 102, 054021 (2020)]

### ★ Lattice data on transversity GPDs

$$\int_{-2}^{2} dx H_{Tq}(x, 0, -0.69 \,\text{GeV}^2, P_3) = \{0.65(4), 0.64(6), 0.81(10)\}, \quad \int_{-2}^{2} dx H_{Tq}(x, \frac{1}{3}, -1.02 \,\text{GeV}^2, 1.25 \,\text{GeV}) = 0.49(5), \\\int_{-1}^{1} dx H_T(x, 0, -0.69 \,\text{GeV}^2) = \{0.69(4), 0.67(6), 0.84(10)\}, \quad \int_{-1}^{1} dx H_T(x, \frac{1}{3}, -1.02 \,\text{GeV}^2) = 0.45(4), \\\int_{-1}^{1} dx x H_T(x, 0, -0.69 \,\text{GeV}^2) = \{0.20(2), 0.21(2), 0.24(3)\}, \quad \int_{-1}^{1} dx x H_T(x, \frac{1}{3}, -1.02 \,\text{GeV}^2) = 0.15(2).$$

 $A_{T10}(-0.69 \,\mathrm{GeV}^2) = \{0.65(4), 0.65(6), 0.82(10)\},\$ 

$$A_{T10}(-1.02 \,\mathrm{GeV}^2) = 0.49(5)$$

- lowest moments the same between quasi-GPDs and GPDs

- Values of moments decrease as t increases
- Higher moments suppressed compared to the lowest



 Understanding of systematic effects through sum rules

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t)$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_3) = \widetilde{A}_{T10}(t)$$

$$\int_{-1}^{1} dx \,\widetilde{E}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \,\widetilde{E}_{Tq}(x,\xi,t,P_3) = 0$$

Sum rules exist for quasi-GPDs 
$$\int_{-1}^{1} dx$$

[S. Bhattacharya et al., PRD 102, 054021 (2020)]

### ★ Lattice data on transversity GPDs

$$\int_{-2}^{2} dx H_{Tq}(x, 0, -0.69 \,\text{GeV}^2, P_3) = \{0.65(4), 0.64(6), 0.81(10)\}, \quad \int_{-2}^{2} dx H_{Tq}(x, \frac{1}{3}, -1.02 \,\text{GeV}^2, 1.25 \,\text{GeV}) = 0.49(5)$$

$$\int_{-2}^{1} dx H_{T}(x, 0, -0.69 \,\text{GeV}^2) = \{0.69(4), 0.67(6), 0.84(10)\}, \quad \int_{-2}^{1} dx H_{T}(x, \frac{1}{2}, -1.02 \,\text{GeV}^2) = 0.45(4),$$

$$\int_{-1}^{1} dx \, x \, H_T(x, 0, -0.69 \,\text{GeV}^2) = \{0.20(2), \, 0.21(2), \, 0.24(3)\}, \quad \int_{-1}^{1} dx \, x \, H_T(x, \frac{1}{3}, -1.02 \,\text{GeV}^2) = 0.15(2).$$

 $A_{T10}(-0.69 \,\mathrm{GeV}^2) = \{0.65(4), 0.65(6), 0.82(10)\},\$ 

$$A_{T10}(-1.02 \,\mathrm{GeV}^2) = 0.49(5)$$

$$\int_{-1}^{1} dx \, x \, H_T(x,\xi,t) = A_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, E_T(x,\xi,t) = B_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{H}_T(x,\xi,t) = \widetilde{A}_{T20}(t) \,,$$

 $\int_{-\infty}^{1}$ 

$$\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$



Sum rules not imposed in calculation

- lowest moments the same between quasi-GPDs and GPDs
- Values of moments decrease as t increases
- Higher moments suppressed compared to the lowest



★ GPDs: off-forward matrix elements of non-local light-cone operators

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik \cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$





★ GPDs: off-forward matrix elements of non-local light-cone operators

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik\cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2})\gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2})\psi(\frac{z}{2}) | p;\lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

★ Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_{3},\mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \langle N(P_{f}) | \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z,0) \Psi(0) | N(P_{i}) \rangle_{\mu} \qquad \Delta = P_{f} - P_{i}$$
$$t = \Delta^{2} = -Q^{2}$$
$$\xi = Q_{3}/(2P_{3})$$



★ GPDs: off-forward matrix elements of non-local light-cone operators

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik\cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2})\gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2})\psi(\frac{z}{2}) | p;\lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

★ Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_{3},\mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \left\langle N(P_{f}) \left| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z,0) \Psi(0) \left| N(P_{i}) \right\rangle_{\mu} \right. \qquad \Delta = P_{f} - P_{i}$$

$$t = \Delta^{2} = -Q^{2}$$

$$\xi = Q_{3}/(2P_{3})$$



★ GPDs: off-forward matrix elements of non-local light-cone operators

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik\cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2})\gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2})\psi(\frac{z}{2}) | p;\lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

★ Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_{3},\mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \left\langle N(P_{f}) \left| \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z,0) \Psi(0) \left| N(P_{i}) \right\rangle_{\mu} \right. \qquad \Delta = P_{f} - P_{i}$$

$$t = \Delta^{2} = -Q^{2}$$

$$\xi = Q_{3}/(2P_{3})$$

**\star** Potential parametrization ( $\gamma^+$  inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[ \gamma^0 H_{\mathbb{Q}(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{\mathbb{Q}(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[ \gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$



★ GPDs: off-forward matrix elements of non-local light-cone operators

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik\cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

★ Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_{3},\mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \left\langle N(P_{f}) \left| \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z,0) \Psi(0) \left| N(P_{i}) \right\rangle_{\mu} \right\rangle \\ = \Delta^{2} = -Q^{2} \\ \xi = Q_{3}/(2P_{3})$$

**\star** Potential parametrization ( $\gamma^+$  inspired)

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[ \gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

$$\left[ u(p, \lambda) \right]$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

$$F^{[\gamma^3]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[ \gamma^3 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

finite mixing with scalar [Constantinou & Panagopoulos (2017)]



GPDs: off-forward matrix elements of non-local light-cone operators

$$F^{[\gamma^+]}(x,\Delta;\lambda,\lambda') = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ik\cdot z} \langle p';\lambda' | \bar{\psi}(-\frac{z}{2}) \gamma^+ \mathcal{W}(-\frac{z}{2},\frac{z}{2}) \psi(\frac{z}{2}) | p;\lambda \rangle \bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}$$

Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$\tilde{q}_{\mu}^{\text{GPD}}(x,t,\xi,P_{3},\mu) = \int \frac{dz}{4\pi} e^{-ixP_{3}z} \left\langle N(P_{f}) \left| \bar{\Psi}(z) \gamma^{\mu} \mathcal{W}(z,0) \Psi(0) \left| N(P_{i}) \right\rangle_{\mu} \right. \qquad \Delta = P_{f} - P_{i}$$

$$t = \Delta^{2} = -Q^{2}$$

$$\xi = Q_{3}/(2P_{3})$$

Potential parametrization ( $\gamma^+$  inspired) X

$$F^{[\gamma^0]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2P^0} \bar{u}(p',\lambda') \left[ \gamma^0 H_{Q(0)}(x,\xi,t;P^3) + \frac{i\sigma^{0\mu}\Delta_{\mu}}{2M} E_{Q(0)}(x,\xi,t;P^3) \right] u(p,\lambda)$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]

$$F^{[\gamma^{3}]}(x,\Delta;\lambda,\lambda';P^{3}) = \frac{1}{2P^{0}}\bar{u}(p',\lambda') \left[\gamma^{3}H_{Q(0)}(x,\xi,t;P^{3}) + \frac{i\sigma^{3\mu}\Delta_{\mu}}{2M}E_{Q(0)}(x,\xi,t;P^{3})\right]u(p,\lambda)$$

finite mixing with scalar [Constantinou & Panagopoulos (2017)]

Symmetric frame ( $\vec{p}_f^s = \vec{P} + \vec{Q}/2, \vec{p}_i^s = \vec{P} - \vec{Q}/2$ ): separate calculations at each *t*