Proton GPDs from lattice QCD

Martha Constantinou

Temple University

CNF Workshop on
Generalized Parton Distributions and Global Analysis

June 13, 2023

Outline

Unpolarized and Helicity Generalized Parton Distributions of the Proton within Lattice QCD

Constantia Alexandrou, ${ }^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou $\odot{ }^{4}$ Kyriakos Hadjiyiannakou, ${ }^{1}$ Karl Jansen, ${ }^{5}$ Aurora Scapellato, ${ }^{3}$ and Fernanda Steffens ${ }^{6}$

PHYSICAL REVIEW D 105, 034501 (2022)

大 Twist-2 GPDs: "traditional" calculations

Transversity GPDs of the proton from lattice QCD
Constantia Alexandrou, ${ }^{1,2}$ Krzysztof Cichy, ${ }_{5}{ }^{3}$ Martha Constantinou $\odot{ }^{4}{ }^{4}$ Kyriakos Hadjiyiannakou, ${ }^{1,2}$ Karl Jansen, ${ }^{5}$ Aurora Scapellato, ${ }^{4}$ and Fernanda Steffens ${ }^{6}$

$$
\text { arXiv:2306.05533v1 [hep-lat] } 8 \text { Jun } 2023
$$

Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya ${ }^{1,2}$, Krzysztof Cichy ${ }^{3}$, Martha Constantinou ${ }^{1}$, Jack Dodson ${ }^{1}$, Andreas Metz ${ }^{1}$, Aurora Scapellato ${ }^{1}$, Fernanda Steffens ${ }^{4}$

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks

Shohini Bhattacharya $\odot_{,}^{1,{ }^{1}}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou $\odot^{3,}{ }^{3, \dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$ Andreas Metz, ${ }^{3}$

[^0]> * Twist-2 GPDs: new approach

Motivation for GPDs studies

[H. Abramowicz et al., whitepaper for NSAC LRP, 2007]
$\mathbf{1}_{\text {mom }}+2_{\text {coord }}$ tomographic images of quark distribution in nucleon at fixed longitudinal momentum

3-D image from FT of the longitudinal mom. transfer
\star GPDs are not well-constrained experimentally:

- x-dependence extraction is not direct. DVCS amplitude: $\mathscr{H}=\int_{-1}^{+1} \frac{H(x, \xi, t)}{x-\xi+i \epsilon} d x$ (SDHEP [J. Qiu et al, arXiv:2205.07846] gives access to x)
- independent measurements to disentangle GPDs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)
- and more challenges ...

Essential to complement the knowledge on GPD from lattice QCD

Twist-classification of PDFs, GPDs, TMDs

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

Twist-classification of PDFs, GPDs, TMDs

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

Twist-2 $\left(f_{i}^{(0)}\right)$

Quark	$\mathrm{U}\left(\gamma^{+}\right)$	$\mathrm{L}\left(\gamma^{+} \gamma^{5}\right)$	$\mathrm{T}\left(\sigma^{+j}\right)$
Nucleon	$H(x, \xi, t)$ $E(x, \xi, t)$ unpolarized		
\mathbf{L}		$\widetilde{H}(x, \xi, t)$ $\widetilde{E}(x, \xi, t)$ helicity	
\mathbf{T}			H_{T}, E_{T} $\widetilde{H}_{T}, \widetilde{E}_{T}$ transversity

Probabilistic interpretation

L

Twist-classification of PDFs, GPDs, TMDs

$$
f_{i}=f_{i}^{(0)}+\frac{f_{i}^{(1)}}{Q}+\frac{f_{i}^{(2)}}{Q^{2}} \cdots
$$

Twist-2 $\left(f_{i}^{(0)}\right)$

Quark	$\mathbf{U}\left(\gamma^{+}\right)$	$\mathbf{L}\left(\gamma^{+} \gamma^{5}\right)$	$\mathrm{T}\left(\sigma^{+j}\right)$
Nucleon	$H(x, \xi, t)$ $E(x, \xi, t)$ unpolarized		
\mathbf{L}		$\widetilde{H}(x, \xi, t)$	
helicity,$t)$			

Twist-3 $\left(f_{i}^{(1)}\right)$

	γ^{j}	$\gamma^{j} \gamma^{5}$	$\sigma^{j k}$
U	$\begin{aligned} & G_{1}, G_{2} \\ & G_{3}, G_{4} \end{aligned}$		
L		$\begin{aligned} & \widetilde{G}_{1} \\ & \widetilde{G}_{3}, \widetilde{G}_{2} \\ & \widetilde{G}_{4} \end{aligned}$	
T			$\begin{aligned} & H_{2}^{\prime}(x, \xi, t) \\ & E_{2}^{\prime}(x, \xi, t) \end{aligned}$

Probabilistic interpretation

L

\star Theoretically: contain $\delta(x)$ singularities
t Contain info on quark-gluon-quark correlators

Accessing information on GPDs

$$
\begin{aligned}
& \text { Mellin moments } \\
& \text { (local OPE expansion) } \\
& \bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}}\left[\bar{q} \gamma^{\sigma} \overleftrightarrow{D}^{\alpha_{1}} \ldots \overleftrightarrow{D}^{\alpha_{n}} q\right]
\end{aligned}
$$

Accessing information on GPDs

* Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \stackrel{\leftrightarrow}{D^{\alpha_{n}}} q\right]}{\text { local operators }}
$$

$\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \mu \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Matrix elements of non-local operators

 (quasi-GPDs, pseudo-GPDs, ...)$$
\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \underset{\text { Wilson line }}{\frac{\mathscr{W}(z, 0) \Psi(0)}{}\left|N\left(P_{i}\right)\right\rangle_{\mu}}
$$

$$
\begin{aligned}
& \left\langle N\left(P^{\prime}\right)\right| O_{V}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} H(x, \xi, t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} E(x, \xi, t)\right\} U(P)+\mathrm{ht}, \\
& \left\langle N\left(P^{\prime}\right)\right| O_{A}^{\mu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} \widetilde{H}(x, \xi, t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} \tilde{E}(x, \xi, t)\right\} U(P)+\mathrm{ht}, \\
& \left\langle N\left(P^{\prime}\right)\right| O_{T}^{\mu \nu}(x)|N(P)\rangle=\bar{U}\left(P^{\prime}\right)\left\{i \sigma^{\mu \nu} H_{T}(x, \xi, t)+\frac{\gamma^{\mu} \Delta^{\nu]}}{2 m_{N}} E_{T}(x, \xi, t)+\frac{\left.\bar{P}^{\mu} \Delta^{\nu}\right]}{m_{N}^{2}} \widetilde{H}_{T}(x, \xi, t)+\frac{\left.\gamma^{[\mu} \widetilde{P}^{\mu}\right]}{m_{N}} \widetilde{E}_{T}(x, \xi, t)\right\} U(P)+\mathrm{ht}
\end{aligned}
$$

Accessing information on GPDs

* Mellin moments (local OPE expansion)

$$
\bar{q}\left(-\frac{1}{2} z\right) \gamma^{\sigma} W\left[-\frac{1}{2} z, \frac{1}{2} z\right] q\left(\frac{1}{2} z\right)=\sum_{n=0}^{\infty} \frac{1}{n!} z_{\alpha_{1}} \ldots z_{\alpha_{n}} \frac{\left[\bar{q} \gamma^{\sigma} \stackrel{\leftrightarrow}{D^{\alpha_{1}}} \ldots \stackrel{\leftrightarrow}{D^{\alpha_{n}}} q\right]}{\text { local operators }}
$$

$\left.\left.\left.\left\langle N\left(P^{\prime}\right)\right| \mathcal{O}_{V}^{\mu \mu_{1} \cdots \mu_{n-1}}|N(P)\rangle \sim \sum_{\substack{i=0 \\ \text { even }}}^{n-1}\left\{\gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}}\right\} A_{n, i}(t)-i \frac{\Delta_{\alpha} \sigma^{\alpha \alpha \mu}}{2 m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \bar{P}^{\mu_{i+1}} \cdots \bar{P}^{\left.\mu_{n-1}\right\}} B_{n_{n, i}(t)}\right\}+\left.\frac{\Delta^{\mu} \Delta^{\mu_{1}} \ldots \Delta^{\mu_{n-1}}}{m_{N}} C_{n, 0}\left(\Delta^{2}\right)\right|_{n \text { even }}\right)\right\}$

Wide -t range that comes at the cost of 1

Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

$$
\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \underset{\text { Wilson line }}{\Gamma \mathscr{V}(z, 0) \Psi(0)}\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

$$
\begin{aligned}
\left\langle N\left(P^{\prime}\right)\right| O_{V}^{\mu}(x)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} H(x, \xi, t)+\frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m_{N}} E(x, \xi, t)\right\} U(P)+\mathrm{ht} \\
\left\langle N\left(P^{\prime}\right)\right| O_{A}^{\mu}(x)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{\gamma^{\mu} \gamma_{5} \widetilde{H}(x, \xi, t)+\frac{\gamma_{5} \Delta^{\mu}}{2 m_{N}} \widetilde{E}(x, \xi, t)\right\} U(P)+\mathrm{ht} \\
\left\langle N\left(P^{\prime}\right)\right| O_{T}^{\mu \nu}(x)|N(P)\rangle & =\bar{U}\left(P^{\prime}\right)\left\{i \sigma^{\mu \nu} H_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \Delta^{\nu]}}{2 m_{N}} E_{T}(x, \xi, t)+\frac{\bar{P}^{[\mu} \Delta^{\nu]}}{m_{N}^{2}} \widetilde{H}_{T}(x, \xi, t)+\frac{\gamma^{[\mu} \bar{P}^{\nu]}}{m_{N}} \widetilde{E}_{T}(x, \xi, t)\right\} U(P)+\mathrm{ht}
\end{aligned}
$$

GPDs

Through non-local matrix elements of fast-moving hadrons

Access of GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$
\tilde{q}_{\Gamma}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

$$
\begin{gathered}
\Delta=P_{f}-P_{i} \\
t=\Delta^{2}=-Q^{2} \\
\xi=\frac{Q_{3}}{2 P_{3}}
\end{gathered}
$$

Access of GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$
\tilde{q}_{\Gamma}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Access of GPDs on a Euclidean Lattice

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]
Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$
\tilde{q}_{\Gamma}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \Gamma \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}
$$

Variables of the calculation:

- length of the Wilson line (z)
- nucleon momentum boost (P_{3})
- momentum transfer (t)
- skewness (ξ)

Parameters of calculations

Nf=2+1+1 twisted mass fermions with a clover term;

[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

frame	$P_{3}[\mathrm{GeV}]$	$\Delta\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.26	0	8	429	8	27456

Parameters of calculations

$\mathrm{Nf}=2+1+1$ twisted mass fermions with a clover term;
[Extended Twisted Mass Collaboration, Phys. Rev. D 104, 074515 (2021), arXiv:2104.13408]

Name	β	N_{f}	$L^{3} \times T$	$a[\mathrm{fm}]$	M_{π}	$m_{\pi} L$
cA211.32	1.726	u, d, s, c	$32^{3} \times 64$	0.093	260 MeV	4

frame	$P_{3}[\mathrm{GeV}]$	$\Delta\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	731	16	23392
symm	± 0.83	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2,0)$	1.39	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.76	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.33	0	16	194	8	12416
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.64	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.80	0	16	194	8	12416
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.16	0	16	194	8	24832
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.37	0	8	429	8	27456
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.50	0	16	194	8	12416
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.26	0	8	429	8	27456

Symmetric frame very expensive computationally

Traditional calculations of GPDs

Unpolarized and Helicity Generalized Parton Distributions of the Proton within Lattice QCD

Constantia Alexandrou, ${ }^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou $\odot,{ }^{4}$ Kyriakos Hadjiyiannakou, ${ }^{1}$
Karl Jansen, ${ }^{5}$ Aurora Scapellato, ${ }^{3}$ and Fernanda Steffens ${ }^{6}$

Transversity GPDs of the proton from lattice QCD
Constantia Alexandrou, ${ }^{1,2}$ Krzysztof Cichy, ${ }^{3}$ Martha Constantinou@, ${ }^{4}$ Kyriakos Hadjiyiannakou, ${ }^{1,2}$
Karl Jansen, ${ }^{5}$ Aurora Scapellato, ${ }^{4}$ and Fernanda Steffens ${ }^{6}$

First lattice calculation of x-dependent GPDs

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
- t-dependence vanishes at large- x
- $\quad H(x, 0)$ asymptotically equal to $f_{1}(x)$

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\star \xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288] $\downarrow t$-dependence vanishes at large- x
- $H(x, 0)$ asymptotically equal to $f_{1}(x)$

First lattice calculation of x-dependent GPDs

[C. Alexandrou et al., PRL 125, 262001 (2020)]

* ERBL/DGLAP: Qualitative differences
$\star \xi= \pm x$ inaccessible (formalism breaks down)
$\star \quad x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288] - t-dependence vanishes at large- x
- $\quad H(x, 0)$ asymptotically equal to $f_{1}(x)$

important contribution in the proton spin

$$
\int_{-1}^{+1} d x x^{2} H^{q}(x, \xi, t)=A_{20}^{q}(t)+4 \xi^{2} C_{20}^{q}(t), \quad \int_{-1}^{+1} d x x^{2} E^{q}(x, \xi, t)=B_{20}^{q}(t)-4 \xi^{2} C_{20}^{q}(t)
$$

First lattice calculation of x-dependent GPDs

\star Qualitative understanding of GPDs and their relations
\star Qualitative understanding of ERBL and DGLAP regions

New parametrization of GPDs

Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks

Shohini Bhattacharya $\odot,{ }^{1,{ }^{*}}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou $\odot,{ }^{3, \dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }_{4}^{4}$ Andreas Metz, ${ }^{3}$ Swagato Mukherjee $\oplus,{ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{4}$

GPDs on the lattice

* γ^{+}inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

GPDs on the lattice

* γ^{+}inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

Lorentz invariant parametrization
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$
A_{i} : - Lorentz invariant amplitudes

- have definite symmetries

GPDs on the lattice

* γ^{+}inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

Lorentz invariant parametrization
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$
A_{i} : - Lorentz invariant amplitudes

- have definite symmetries

Two decompositions can be related

$$
\begin{aligned}
& \mathcal{H}_{0}^{s}\left(A_{i}^{s} ; z\right)=A_{1}+\frac{z\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} A_{6}, \\
& \mathcal{E}_{0}^{s}\left(A_{i}^{s} ; z\right)=-A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} A_{6}
\end{aligned}
$$

GPDs on the lattice

* γ^{+}inspired parametrization is prohibitively expensive

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

Lorentz invariant parametrization
$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$
A_{i} : - Lorentz invariant amplitudes

- have definite symmetries

Two decompositions can be related

$$
\begin{aligned}
& \mathcal{H}_{0}^{s}\left(A_{i}^{s} ; z\right)=A_{1}+\frac{z\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} A_{6}, \\
& \mathcal{E}_{0}^{s}\left(A_{i}^{s} ; z\right)=-A_{1}-\frac{m^{2} z}{P_{3}} A_{4}+2 A_{5}-\frac{z\left(4 E^{2}+\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} A_{6}
\end{aligned}
$$

Light-cone GPDs using lattice correlators in non-symmetric frames

Theoretical setup

$$
F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)
$$

Goals
(A) A_{i} are to the standard H, E GPDs $\quad \mathcal{H}_{0}^{s}\left(A_{i}^{s} ; z\right)=A_{1}+\frac{z\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} A_{6}$
(B) Extraction of standard GPDs using A_{i} obtained from any frame
(C) quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone:

Theoretical setup

$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$
Goals
(A) A_{i} are to the standard H, E GPDs $\quad \mathcal{H}_{0}^{s}\left(A_{i}^{s} ; z\right)=A_{1}+\frac{z\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} A_{6}$
(B) Extraction of standard GPDs using A_{i} obtained from any frame
(C) quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone:

$$
\begin{aligned}
& H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg,s/a }} \cdot z} A_{3} \\
& E\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=-A_{1}-\frac{\Delta_{s / a} \cdot z}{P_{\text {avg,s/a }} \cdot z} A_{3}+2 A_{5}+2 P_{\text {avv, } s / a} \cdot z A_{6}+2 \Delta_{s / a} \cdot z A_{8}
\end{aligned}
$$

Theoretical setup

$F_{\lambda, \lambda^{\prime}}^{\mu}=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{M} A_{1}+z^{\mu} M A_{2}+\frac{\Delta^{\mu}}{M} A_{3}+i \sigma^{\mu z} M A_{4}+\frac{i \sigma^{\mu \Delta}}{M} A_{5}+\frac{P^{\mu} i \sigma^{z \Delta}}{M} A_{6}+\frac{z^{\mu} i \sigma^{z \Delta}}{M} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{M} A_{8}\right] u(p, \lambda)$

Goals

(A) A_{i} are to the standard H, E GPDs $\quad \mathcal{H}_{0}^{s}\left(A_{i}^{s} ; z\right)=A_{1}+\frac{z\left(\Delta_{1}^{2}+\Delta_{2}^{2}\right)}{2 P_{3}} A_{6}$
(B) Extraction of standard GPDs using A_{i} obtained from any frame
(C) quasi-GPDs may be redefined (Lorentz covariant) inspired by light-cone:

$$
\begin{aligned}
& H\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=A_{1}+\frac{\Delta_{s / a} \cdot z}{P_{\text {avg,s/a }} \cdot z} A_{3} \\
& E\left(z \cdot P, z \cdot \Delta, t=\Delta^{2}, z^{2}\right)=-A_{1}-\frac{\Delta_{s / a} \cdot z}{P_{\text {avg,sla }} \cdot z} A_{3}+2 A_{5}+2 P_{\text {avy,s/a }} \cdot z A_{6}+2 \Delta_{s / a} \cdot z A_{8}
\end{aligned}
$$

(A) Proof-of-concept calculation $(\xi=0)$:

- symmetric frame: $\quad \vec{p}_{f}^{s}=\vec{P}+\frac{\vec{Q}}{2}, \quad \vec{p}_{i}^{s}=\vec{P}-\frac{\vec{Q}}{2} \quad-t^{s}=\vec{Q}^{2}=0.69 \mathrm{GeV}^{2}$
- asymmetric frame: $\quad \vec{p}_{f}^{a}=\vec{P}, \quad \vec{p}_{i}^{a}=\vec{P}-\vec{Q} \quad t^{a}=-\vec{Q}^{2}+\left(E_{f}-E_{i}\right)^{2}=0.65 \mathrm{GeV}^{2}$

Comparison of A_{i} in two frames

$\star A_{1}, A_{5}$ dominant contributions
Full agreement in two frames for both Re and Im parts of A_{1}, A_{5}
$\star A_{3}, A_{4}, A_{8}$ zero at $\xi=0$
$\star A_{2}, A_{6}, A_{7}$ suppressed (at least for this kinematic setup and $\xi=0$)

GPDs in terms of A_{i}

Non LI definitions (agreement not theoretically expected)

LI definition (agreement anticipated theoretically)

GPDs in terms of A_{i}

Non LI definitions (agreement not theoretically expected)

4.0	
3.5	$E_{0}^{s}\left(A_{i}^{s} ; x\right)$
3.0	$E_{0}^{a}\left(A_{i}^{;} ; x\right)$

H, E light-cone GPDs

quasi-GPDs transformed to momentum space

Matching formalism to 1 loop accuracy level
+/-x correspond to quark and anti-quark region
Anti-quark region susceptible to systematic uncertainties.

$-t=0.17 \mathrm{GeV}^{2}$
$-t=0.33 \mathrm{GeV}^{2}$
$-t=0.64 \mathrm{GeV}^{2}$
$-t=0.80 \mathrm{GeV}^{2}$
$-t=1.16 \mathrm{GeV}^{2}$
$-t=1.37 \mathrm{GeV}^{2}$
$-t=1.50 \mathrm{GeV}^{2}$
$-t=2.26 \mathrm{GeV}^{2}$

Similar analysis for helicity GPDs

H, E light-cone GPDs

quasi-GPDs transformed to momentum space

* Matching formalism to 1 loop accuracy level

+/-x correspond to quark and anti-quark region ${ }^{\text {Several values of }-\mathrm{taccessible} \text { at once }}$
Anti-quark region susceptible to systematic uncertainties.

$-t=0.17 \mathrm{GeV}^{2}$
$-t=0.33 \mathrm{GeV}^{2}$
$-t=0.64 \mathrm{GeV}^{2}$
$-t=0.80 \mathrm{GeV}^{2}$
$-t=1.16 \mathrm{GeV}^{2}$
$-t=1.37 \mathrm{GeV}^{2}$
$-t=1.50 \mathrm{GeV}^{2}$
$-t=2.26 \mathrm{GeV}^{2}$

Similar analysis for helicity GPDs

Exploration of twist-3 GPDs

$$
\text { arXiv:2306.05533v1 [hep-lat] } 8 \text { Jun } 2023
$$

Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya ${ }^{1,2}$, Krzysztof Cichy ${ }^{3}$, Martha Constantinou ${ }^{1}$, Jack Dodson ${ }^{1}$, Andreas Metz ${ }^{1}$, Aurora Scapellato ${ }^{1}$, Fernanda Steffens ${ }^{4}$

First lattice calculation of twist-3 GPDs

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]
[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

First lattice calculation of twist-3 GPDs

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372] [F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]
[S. Bhattacharya et al., PRD 102 (2020) 11] (Editors Highlight)

First lattice calculation of twist-3 GPDs

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]
[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]
\star Consistency checks: sum rules

$$
\begin{gathered}
\int_{-1}^{1} d x \widetilde{H}(x, \xi, t)=G_{A}(t), \quad \int_{-1}^{1} d x \widetilde{E}(x, \xi, t)=G_{P}(t) \\
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4 \\
\int d x x \widetilde{G}_{3}=\frac{\xi}{4} G_{E}(t)
\end{gathered}
$$

First lattice calculation of twist-3 GPDs

$$
\begin{aligned}
F^{\left[\gamma^{\mu} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{3}} \bar{u}\left(p_{f}, \lambda^{\prime}\right) & {\left[P^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{0}} F_{\widetilde{H}}\left(x, \xi, t ; P^{3}\right)+P^{\mu} \frac{\Delta^{3} \gamma_{5}}{2 m P^{0}} F_{\widetilde{E}}\left(x, \xi, t ; P^{3}\right)\right.} \\
& +\Delta_{\perp}^{\mu} \frac{\gamma_{5}}{2 m} F_{\widetilde{E}+\widetilde{G}_{1}}\left(x, \xi, t ; P^{3}\right)+\gamma_{\perp}^{\mu} \gamma_{5} F_{\widetilde{H}+\widetilde{G}_{2}}\left(x, \xi, t ; P^{3}\right) \\
& \left.+\Delta_{\perp}^{\mu} \frac{\gamma^{3} \gamma_{5}}{P^{3}} F_{\widetilde{G}_{3}}\left(x, \xi, t ; P^{3}\right)+i \varepsilon_{\perp}^{\mu \nu} \Delta_{\nu} \frac{\gamma^{3}}{P^{3}} F_{\widetilde{G}_{4}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
\end{aligned}
$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]
[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]
\star Consistency checks: sum rules

$$
\begin{gathered}
\int_{-1}^{1} d x \widetilde{H}(x, \xi, t)=G_{A}(t), \quad \int_{-1}^{1} d x \widetilde{E}(x, \xi, t)=G_{P}(t) \\
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4 \\
\int d x x \widetilde{G}_{3}=\frac{\xi}{4} G_{E}(t)
\end{gathered}
$$

Indeed, numerically found to be zero within uncertainties at $\xi=0$

First lattice calculation of twist-3 GPDs

First lattice calculation of twist-3 GPDs

First lattice calculation of twist-3 GPDs

Negative areas in $\widetilde{G_{2}}$ theoretically anticipated:

$$
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
$$

First lattice calculation of twist-3 GPDs

* Direct access to \widetilde{E}-GPD not possible for zero skewness

Glimpse into \widetilde{E}-GPD through twist-3 :

First lattice calculation of twist-3 GPDs

* Direct access to \widetilde{E}-GPD not possible for zero skewness

Glimpse into \widetilde{E}-GPD through twist-3 :

Sizable contributions as expected

$$
\begin{gathered}
\int_{-1}^{1} d x \widetilde{E}(x, \xi, t)=G_{P}(t) \\
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
\end{gathered}
$$

First lattice calculation of twist-3 GPDs

Direct access to \widetilde{E}-GPD not possible for zero skewness
Glimpse into \widetilde{E}-GPD through twist-3 :

Sizable contributions as expected

$$
\begin{gathered}
\int_{-1}^{1} d x \widetilde{E}(x, \xi, t)=G_{P}(t) \\
\int_{-1}^{1} d x \widetilde{G}_{i}(x, \xi, t)=0, \quad i=1,2,3,4
\end{gathered}
$$

$\star \widetilde{G}_{4}$ very small; no theoretical argument to be zero

$$
\int_{-1}^{1} d x x \widetilde{G}_{4}(x, \xi, t)=\frac{1}{4} G_{E}
$$

First lattice calculation of twist-3 GPDs

Consistency checks

* Norms satisfied

GPD	$P_{3}=0.83[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.67[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=1.38\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=2.76\left[\mathrm{GeV}^{2}\right]$
\widetilde{H}	$0.741(21)$	$0.712(27)$	$0.802(48)$	$0.499(21)$	$0.281(18)$
$\widetilde{H}+\widetilde{G}_{2}$	$0.719(25)$	$0.750(33)$	$0.788(70)$	$0.511(36)$	$0.336(34)$

Alternative decomposition (LI) numerically confirmed

[Fernanda Steffens]

$$
\begin{array}{ll}
F_{\widetilde{H}+\widetilde{G}_{2}}=\frac{1}{2 m^{2}} \frac{z_{3} P_{0}^{2}\left(\Delta_{\perp}\right)^{2}}{P_{3}}+A_{2} & F_{\widetilde{G}_{3}}=\frac{1}{2 m^{2}}\left(z_{3} P_{0}^{2} \Delta_{3}-z_{3} P_{3} P_{0} \Delta_{0}\right) A_{1}-z_{3} P_{3} A_{8} \\
F_{\widetilde{E}+\widetilde{G}_{1}}=\frac{2 z_{3} P_{0}^{2}}{P_{3}}+2 A_{5} & F_{\widetilde{G}_{3}}=\frac{1}{m^{2}}\left(z_{3} P_{0} P_{3}^{2}-z_{3} P_{0}^{3}\right) A_{1}
\end{array}
$$

First lattice calculation of twist-3 GPDs

Consistency checks

\star Norms satisfied

GPD	$P_{3}=0.83[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.67[\mathrm{GeV}]$ $-t=0.69\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=1.38\left[\mathrm{GeV}^{2}\right]$	$P_{3}=1.25[\mathrm{GeV}]$ $-t=2.76\left[\mathrm{GeV}^{2}\right]$
\widetilde{H}	$0.741(21)$	$0.712(27)$	$0.802(48)$	$0.499(21)$	$0.281(18)$
$\widetilde{H}+\widetilde{G}_{2}$	$0.719(25)$	$0.750(33)$	$0.788(70)$	$0.511(36)$	$0.336(34)$

Alternative decomposition (LI) numerically confirmed

[Fernanda Steffens]

$$
\begin{array}{ll}
F_{\widetilde{H}+\widetilde{G}_{2}}=\frac{1}{2 m^{2}} \frac{z_{3} P_{0}^{2}\left(\Delta_{\perp}\right)^{2}}{P_{3}}+A_{2} & F_{\widetilde{G}_{3}}=\frac{1}{2 m^{2}}\left(z_{3} P_{0}^{2} \Delta_{3}-z_{3} P_{3} P_{0} \Delta_{0}\right) A_{1}-z_{3} P_{3} A_{8} \\
F_{\widetilde{E}+\widetilde{G}_{1}}=\frac{2 z_{3} P_{0}^{2}}{P_{3}}+2 A_{5} & F_{\widetilde{G}_{3}}=\frac{1}{m^{2}}\left(z_{3} P_{0} P_{3}^{2}-z_{3} P_{0}^{3}\right) A_{1}
\end{array}
$$

Consistency checks show encouraging results

How to lattice QCD data fit into the overall effort for hadron tomography

How to lattice QCD data fit into the overall effort for hadron tomography
Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

How to lattice QCD data fit into the overall effort for hadron tomography

* Lattice data may be incorporated in global analysis of experimental data and may influence parametrization of t and ξ dependence

1. Theoretical studies of high-momentum transfer processes using perturbative QCD methods and study of GPDs properties
2. Lattice QCD calculations of GPDs and related structures
3. Global analysis of GPDs based on experimental data using modern data analysis techniques for inference and uncertainty quantification

Synergies: constraints \& predictive power of lattice QCD

[JAM/HadStruc, PRD105 (2022) 114051]
proton \& neutron radius

[Atac et al., Nature Comm. 12, 1759 (2021)]

helicity PDF

[JAM \& ETMC, PRD 103 (2021) 016003]

Experiments, global analysis
transversity PDF

[JAM, PRD 106 (2022) 3, 034014]

And many more!

Summary

* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
* New proposal for Lorentz invariant decomposition has great advantages:
- significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs

Mellin moments can be extracted utilizing quasi-GPDs data

Synergy with phenomenology is an exciting prospect!
M. Constantinou, CNF-GPDs June 2023

Summary

* Lattice QCD data on GPDs will play an important role in the pre-EIC era and can complement experimental efforts of JLab@12GeV
* New proposal for Lorentz invariant decomposition has great advantages:
- significant reduction of computational cost
- access to a broad range of t and ξ
* Future calculations have the potential to transform the field of GPDs

Mellin moments can be extracted utilizing quasi-GPDs data

Synergy with phenomenology is an exciting prospect!

> Thank you

Office of
Science

DOE Early Career Award (NP)
Grant No. DE-SC0020405

Helicity quasi-GPDs

太 Lorentz-invariant decomposition applicable to helicity case At $\xi=0$ only \widetilde{H} is accessible directly (\widetilde{E} accessible from parametrization of the t dependence)

Helicity quasi-GPDs

太 Lorentz-invariant decomposition applicable to helicity case
At $\xi=0$ only \widetilde{H} is accessible directly (\widetilde{E} accessible from parametrization of the t dependence)
\star All values of t obtained at the cost of one

* Preliminary analysis very encouraging!

Helicity quasi-GPDs

太 Lorentz-invariant decomposition applicable to helicity case

* At $\xi=0$ only \widetilde{H} is accessible directly (\widetilde{E} accessible from parametrization of the t dependence)

\star All values of t obtained at the cost of one
* Preliminary analysis very encouraging!

What can we currently check using lattice results?

M. Constantinou, CNF-GPDs June 2023

What can we currently check using lattice results?

Understanding of systematic effects through sum rules

$$
\begin{array}{ll}
\int_{-1}^{1} d x H_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x H_{T q}\left(x, \xi, t, P_{3}\right)=A_{T 10}(t), & \\
\int_{-1}^{1} d x E_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x E_{T q}\left(x, \xi, t, P_{3}\right)=B_{T 10}(t), & \\
\int_{-1}^{1} d x x E_{T}(x, \xi, t)=A_{T 20}(t), \\
\int_{-1}^{1} d x \widetilde{H}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{H}_{T q}\left(x, \xi, t, P_{3}\right)=\widetilde{A}_{T 10}(t), & \\
\int_{-1}^{1} d x x \widetilde{H}_{T}(x, \xi, t)=\widetilde{A}_{T 20}(t), \\
\int_{-1}^{1} d x \widetilde{E}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{E}_{T q}\left(x, \xi, t, P_{3}\right)=0 . & \int_{-1}^{1} d x x \widetilde{E}_{T}(x, \xi, t)=2 \xi \widetilde{B}_{T 21}(t) .
\end{array}
$$

What can we currently check using lattice results?

Understanding of systematic effects through sum rules

Sum rules exist for quasi-GPDs
[S. Bhattacharya et al., PRD 102, 054021 (2020)]

$$
\begin{array}{ll}
\int_{-1}^{1} d x H_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x H_{T q}\left(x, \xi, t, P_{3}\right)=A_{T 10}(t), & \\
\int_{-1}^{1} d x E_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x E_{T q}\left(x, \xi, t, P_{3}\right)=B_{T 10}(t), & \\
\int_{-1}^{1} d x x E_{T}(x, \xi, t)=A_{T 20}(t) \\
\int_{-1}^{1} d x \widetilde{H}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{H}_{T q}\left(x, \xi, t, P_{3}\right)=\widetilde{A}_{T 10}(t), & \\
\int_{-1}^{1} d x x \widetilde{H}_{T}(x, \xi, t)=\widetilde{A}_{T 20}(t) \\
\int_{-1}^{1} d x \widetilde{E}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{E}_{T q}\left(x, \xi, t, P_{3}\right)=0 . & \int_{-1}^{1} d x x \widetilde{E}_{T}(x, \xi, t)=2 \xi \widetilde{B}_{T 21}(t) .
\end{array}
$$

What can we currently check using lattice results?

\star Understanding of systematic effects through sum rules

Sum rules exist for quasi-GPDs
[S. Bhattacharya et al., PRD 102, 054021 (2020)]
$\int_{-1}^{1} d x x H_{T}(x, \xi, t)=A_{T 20}(t)$,
$\int_{-1}^{1} d x x E_{T}(x, \xi, t)=B_{T 20}(t)$,
$\int_{-1}^{1} d x x \widetilde{H}_{T}(x, \xi, t)=\widetilde{A}_{T 20}(t)$,
$\int_{-1}^{1} d x x \widetilde{E}_{T}(x, \xi, t)=2 \xi \widetilde{B}_{T 21}(t)$.

* Lattice data on transversity GPDs

$$
\begin{array}{ll}
\int_{-2}^{2} d x H_{T q}\left(x, 0,-0.69 \mathrm{GeV}^{2}, P_{3}\right)=\{0.65(4), 0.64(6), 0.81(10)\}, & \int_{-2}^{2} d x H_{T q}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}, 1.25 \mathrm{GeV}\right)=0.49(5) \\
\int_{-1}^{1} d x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.69(4), 0.67(6), 0.84(10)\}, & \int_{-1}^{1} d x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.45(4) \\
\int_{-1}^{1} d x x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.20(2), 0.21(2), 0.24(3)\}, & \int_{-1}^{1} d x x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.15(2) \\
A_{T 10}\left(-0.69 \mathrm{GeV}^{2}\right)=\{0.65(4), 0.65(6), 0.82(10)\}, & A_{T 10}\left(-1.02 \mathrm{GeV}^{2}\right)=0.49(5)
\end{array}
$$

What can we currently check using lattice results?

\star Understanding of systematic effects through sum rules

Sum rules exist for quasi-GPDs
[S. Bhattacharya et al., PRD 102, 054021 (2020)]
$\int_{-1}^{1} d x x H_{T}(x, \xi, t)=A_{T 20}(t)$,
$\int_{-1}^{1} d x E_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x E_{T q}\left(x, \xi, t, P_{3}\right)=B_{T 10}(t)$,
$\int_{-1}^{1} d x \widetilde{H}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{H}_{T q}\left(x, \xi, t, P_{3}\right)=\widetilde{A}_{T 10}(t)$,
$\int_{-1}^{1} d x x \widetilde{H}_{T}(x, \xi, t)=\widetilde{A}_{T 20}(t)$,
$\int_{-1}^{1} d x \widetilde{E}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{E}_{T q}\left(x, \xi, t, P_{3}\right)=0$.
$\int_{-1}^{1} d x x \widetilde{E}_{T}(x, \xi, t)=2 \xi \widetilde{B}_{T 21}(t)$.

* Lattice data on transversity GPDs

$$
\begin{array}{ll}
\int_{-2}^{2} d x H_{T q}\left(x, 0,-0.69 \mathrm{GeV}^{2}, P_{3}\right)=\{0.65(4), 0.64(6), 0.81(10)\}, & \int_{-2}^{2} d x H_{T q}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}, 1.25 \mathrm{GeV}\right)=0.49(5), \\
\int_{-1}^{1} d x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.69(4), 0.67(6), 0.84(10)\}, & \int_{-1}^{1} d x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.45(4) \\
\int_{-1}^{1} d x x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.20(2), 0.21(2), 0.24(3)\}, & \int_{-1}^{1} d x x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.15(2) \\
A_{T 10}\left(-0.69 \mathrm{GeV}^{2}\right)=\{0.65(4), 0.65(6), 0.82(10)\}, & A_{T 10}\left(-1.02 \mathrm{GeV}^{2}\right)=0.49(5)
\end{array}
$$

- lowest moments the same between quasi-GPDs and GPDs
- Values of moments decrease as t increases
- Higher moments suppressed compared to the lowest

What can we currently check using lattice results?

$\star \begin{gathered}\text { Understanding of } \\ \text { systematic effects } \\ \text { through sum rules }\end{gathered}$

Sum rules exist for quasi-GPDs
[S. Bhattacharya et al., PRD 102, 054021 (2020)]
\star Lattice data on transversity GPDs

$$
\begin{array}{ll}
\int_{-1}^{1} d x H_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x H_{T q}\left(x, \xi, t, P_{3}\right)=A_{T 10}(t), & \int_{-1}^{1} d x x H_{T}(x, \xi, t)=A_{T 20}(t), \\
\int_{-1}^{1} d x E_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x E_{T q}\left(x, \xi, t, P_{3}\right)=B_{T 10}(t), & \int_{-1}^{1} d x x E_{T}(x, \xi, t)=B_{T 20}(t), \\
\int_{-1}^{1} d x \widetilde{H}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{H}_{T q}\left(x, \xi, t, P_{3}\right)=\widetilde{A}_{T 10}(t), \\
\int_{-1}^{1} d x \widetilde{E}_{T}(x, \xi, t)=\int_{-\infty}^{\infty} d x \widetilde{E}_{T q}\left(x, \xi, t, P_{3}\right)=0 . \\
\text { (2020)] } \\
\text { ersity GPDS }
\end{array}
$$

Sum rules not imposed in calculation

$$
\begin{array}{ll}
\int_{-2}^{2} d x H_{T q}\left(x, 0,-0.69 \mathrm{GeV}^{2}, P_{3}\right)=\{0.65(4), 0.64(6), 0.81(10)\}, & \int_{-2}^{2} d x H_{T q}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}, 1.25 \mathrm{GeV}\right)=0.49(5) \\
\int_{-1}^{1} d x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.69(4), 0.67(6), 0.84(10)\}, & \int_{-1}^{1} d x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.45(4) \\
\int_{-1}^{1} d x x H_{T}\left(x, 0,-0.69 \mathrm{GeV}^{2}\right)=\{0.20(2), 0.21(2), 0.24(3)\}, & \int_{-1}^{1} d x x H_{T}\left(x, \frac{1}{3},-1.02 \mathrm{GeV}^{2}\right)=0.15(2) \\
A_{T 10}\left(-0.69 \mathrm{GeV}^{2}\right)=\{0.65(4), 0.65(6), 0.82(10)\}, & A_{T 10}\left(-1.02 \mathrm{GeV}^{2}\right)=0.49(5)
\end{array}
$$

- lowest moments the same between quasi-GPDs and GPDs
- Values of moments decrease as t increases
- Higher moments suppressed compared to the lowest

GPDs on the lattice

GPDs: off-forward matrix elements of non-local light-cone operators

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

GPDs on the lattice

GPDs: off-forward matrix elements of non-local light-cone operators

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k z z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \bar{z}_{\perp}=\overline{0}_{\perp}}
$$

Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu} \quad \begin{aligned}
\Delta & =P_{f}-P_{i} \\
& t=\Delta^{2}=-Q^{2} \\
\xi & =Q_{3} /\left(2 P_{3}\right)
\end{aligned}
$$

GPDs on the lattice

GPDs: off-forward matrix elements of non-local light-cone operators

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k z z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \bar{z}_{\perp}=\overline{0}_{\perp}}
$$

\star Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\mathrm{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu} \quad \begin{aligned}
& \Delta=P_{f}-P_{i} \\
& \\
&
\end{aligned}
$$

GPDs on the lattice

GPDs: off-forward matrix elements of non-local light-cone operators

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \vec{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

А Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\operatorname{GPD}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu}} \begin{aligned}
& \Delta=P_{f}-P_{i} \\
& \begin{array}{l}
t=\Delta^{2}=-Q^{2} \\
\xi=Q_{3} /\left(2 P_{3}\right)
\end{array}
\end{aligned}
$$

* Potential parametrization (γ^{+}inspired)

$$
\begin{aligned}
& F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda) \\
& F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
\end{aligned}
$$

GPDs on the lattice

GPDs: off-forward matrix elements of non-local light-cone operators

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, z_{\perp}=\overline{0}_{\perp}}
$$

* Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu} \quad \begin{aligned}
& \Delta=P_{f}-P_{i} \\
& t=\Delta^{2}=-Q^{2} \\
& \xi=Q_{3} /\left(2 P_{3}\right)
\end{aligned}
$$

Potential parametrization (γ^{+}inspired)

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

$$
F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]
finite mixing with scalar
[Constantinou \& Panagopoulos (2017)]

GPDs on the lattice

GPDs: off-forward matrix elements of non-local light-cone operators

$$
F^{\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathscr{W}\left(-\frac{z}{2}, \frac{z}{2}\right) \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0, \bar{z}_{\perp}=\overrightarrow{0}_{\perp}}
$$

* Off-forward correlators with nonlocal (equal-time) operators [Ji, PRL 110 (2013) 262002]

$$
\tilde{q}_{\mu}^{\operatorname{GPD}}\left(x, t, \xi, P_{3}, \mu\right)=\int \frac{d z}{4 \pi} e^{-i x P_{3} z}\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle_{\mu} \quad \begin{aligned}
& \Delta=P_{f}-P_{i} \\
& t=\Delta^{2}=-Q^{2} \\
& \xi=Q_{3} /\left(2 P_{3}\right)
\end{aligned}
$$

Potential parametrization (γ^{+}inspired)

$$
F^{\left[\gamma^{0}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{0} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{0 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

$$
F^{\left[\gamma^{3}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime} ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[\gamma^{3} H_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)+\frac{i \sigma^{3 \mu} \Delta_{\mu}}{2 M} E_{\mathrm{Q}(0)}\left(x, \xi, t ; P^{3}\right)\right] u(p, \lambda)
$$

reduction of power corrections in fwd limit [Radyushkin, PLB 767, 314, 2017]
finite mixing with scalar [Constantinou \& Panagopoulos (2017)]

Symmetric frame ($\vec{p}_{f}^{s}=\vec{P}+\vec{Q} / 2, \vec{p}_{i}^{s}=\vec{P}-\vec{Q} / 2$): separate calculations at each t

[^0]: Swagato Mukherjee \oplus, ${ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, and Yong Zhao

