Accessing GPDs using the dilepton final state: Results and perspectives with CLASI2 and more

Pierre Chatagnon, for the CLAS collaboration 12nd of June 2023

Outline of the talk

. II IV V Introduction to GPDs and motivations for their measurements

The CLASI2 experiment at Jefferson Lab

Early results: First Timelike Compton Scattering measurement with CLAS12

Ongoing effort : near threshold J/ ψ photoproduction measurement on protons and neutrons

Long term perspectives with CLASI2: Luminosity upgrade and muon detection

Part I: The Generalized Parton Distributions

What can we learn from GPDs?

• Tomography of the nucleon: the Fourier transform of the GPDs can be interpreted as a probability density:

$$H^q(x,b_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-ib_{\perp}\Delta_{\perp}} H^q(x,0,-\Delta_{\perp}^2)$$

• Understanding the spin composition of the nucleon (aka the "spin puzzle") using the Ji's sum rule:

$$\frac{1}{2} = J_Q + J_G \longrightarrow J_Q = \sum_q \frac{1}{2} \int_{-1}^1 dx \ x(H^q(x,\xi,0) + E^q(x,\xi,0)) = \sum_q \frac{1}{2} \frac{1}{2} (A^q(t) + B^q(t))$$

• Accessing Gravitational Form Factors by mimicking a spin-2 interaction:

$$\int_{-1}^{1} dx \ x H^{q}(x,\xi,t) = \frac{A^{q}(t)}{A^{q}(t)} + \xi^{2} D^{q}(t) \qquad \int_{-1}^{1} dx \ x E^{q}(x,\xi,t) = \frac{B^{q}(t)}{B^{q}(t)} - \xi^{2} D^{q}(t)$$

Part II: The CLASI2 experiment at Jefferson Lab

- The Continuous Electron Beam Accelerator Facility provides a quasi-continuous beam of polarized electron, up to 12 GeV.
- Build around two anti-parallel linacs, with recirculation arcs on both ends. The maximum energy is reached after 6 pass through the linacs.
- 4 experimental halls: A, B, C and D
 - A. C. Small acceptance but large luminosity
 - B. Housing CLASI2, a large acceptance detector
 - D. Tagged photon beam, dedicated to spectroscopy

CLASI2 in action

e

Part III: First Timelike Compton Scattering measurement with CLASI2

• BH cross section only depends on electromagnetic FFs.

Part III: TCS Measurement with CLASI2

• At JLab, energies the BH cross section is expected to be larger than the TCS one. We aimed at measuring the interference cross section between BH and TCS.

Motivations to measure TCS

Test of the universality of the GPDs

- Both DVCS and TCS amplitudes are parametrized by GPDs.
- The imaginary part of the CFF \mathcal{H} is well known from DVCS results... ...and also accessible from TCS polarization asymmetry.
- TCS does not involve Distribution Amplitudes unlike Deeply Virtual Meson Production (DVMP)
 - \rightarrow Direct comparison between TCS and DVCS (at leading twist).

Unique access to the real part of the CFF $\,{\cal H}$

- Angular dependence of the unpolarized interference cross-section gives access to the real part of ${\cal H}$
- This quantity is not well constrained by existing data.
- However it is of great interest as related to the GFFs D, itself related to the mechanical properties of the nucleon:

$$\operatorname{Re}\mathcal{H}(\xi,t) = \mathcal{P}\int_{-1}^{1} dx \left(\frac{1}{\xi-x} - \frac{1}{\xi+x}\right) \operatorname{Im}\mathcal{H}(\xi,t) + \Delta(t)$$
$$\Delta(t) \propto D^{Q}(t) \propto \int d^{3}\mathbf{r} \ p(r)\frac{j_{0}(r\sqrt{-t})}{t}$$

(Quasi-)Photoproduction events selection

The dilepton invariant mass spectrum

- Data taken in Fall 2018
- 10.6 GeV beam on Liquid H₂ target
- Accumulated charge: 37mC or 48 fb⁻¹
- Vector mesons peaks are visible in data: ω (770), ρ (782), ϕ (1020) and J/ ψ (3096).
- Data/simulation are matching at the 15% level, up to an overall normalization factor.
- No clear contribution of higher mass vector meson production (ρ (1450), ρ (1700)).

Phase-space for the TCS analysis

 $\begin{array}{l} 0.15 \ {\rm GeV^2} < -t < 0.8 \ {\rm GeV^2} \\ 1.5 \ {\rm GeV} < M_{e^+e^-} < 3 \ {\rm GeV} \\ 4 \ {\rm GeV} < E_{\gamma} < 10.6 \ {\rm GeV} \end{array}$

Jefferson Lab

Photon polarization asymmetry results

Definition

$$A_{\odot U} = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} \propto \frac{\frac{L_0}{L} \sin \phi \frac{(1 + \cos^2 \theta)}{\sin(\theta)} \operatorname{Im} \mathcal{H}}{d\sigma_{BH}}$$

Experimentally: $A_{\odot U}(-t, E\gamma, M; \phi) = \frac{1}{P_b} \frac{N^+ - N^-}{N^+ + N^-}$

- A sizeable asymmetry is measured, above the expected vanishing asymmetry predicted for BH.
- Results have been compared to 2 model predictions:
 - I. VGG model
 - 2. GK model
- The size of the asymmetry is well reproduced by both models, giving a hint for the universality of GPDs.

Figure in First Measurement of Timelike Compton Scattering, P. Chatagnon et al. (CLAS Collaboration), Phys. Rev. Lett. 127, 262501 (2021)

......

Forward/Backward asymmetry results

Observable definition

٠

$$A_{FB}(\theta_{0},\phi_{0}) = \frac{d\sigma(\theta_{0},\phi_{0}) - d\sigma(180^{\circ} - \theta_{0},180^{\circ} + \phi_{0})}{d\sigma(\theta_{0},\phi_{0}) + d\sigma(180^{\circ} - \theta_{0},180^{\circ} + \phi_{0})}$$
$$\propto \frac{\frac{L_{0}}{L}\cos\phi_{0}\frac{(1+\cos^{2}\theta_{0})}{\sin(\theta_{0})}\operatorname{Re}\tilde{M}^{--}}{d\sigma_{BH}(\theta_{0},\phi_{0}) + d\sigma_{BH}(180^{\circ} - \theta_{0},180^{\circ} + \phi_{0})}$$

• Integration over the forward angular bin :

 $\theta \in [50^{\circ}, 80^{\circ}] \text{ and } \phi \in [-40^{\circ}, 40^{\circ}]$

- The measured asymmetry is non-zero: evidence of signal beyond pure BH contribution
 - Measured asymmetry is better reproduced by the VGG model including the D-term
 - I. Confirmation of the importance of the D-term in the parametrization of the GPD
 - 2. One can use TCS data to constrain it

Part III: TCS Measurement with CLASI2

Short-term perspectives for TCS measurements with CLASI2

Projections for the full proton target dataset (RG-A)

- Only a fraction of RGA was used for in the PRL article (1/3)۲
- New significant improvement on the tracking software have ٠ been done since $2020 \rightarrow 50\%$ more efficiency for the 3particle final state

+ Deuterium dataset available for nTCS and bound proton TCS

Analysis on longitudinally polarized proton target dataset (RG-C)

🛨 BH

0.8

-t (GeV²)

Oher TCS measurements at Jefferson Lab

Transversely polarized TCS in Hall C

$y P \rightarrow e^+ e^- P'$

1. High intensity photon source $1.5 \times 10^{12} \text{ y/sec}$ (CPS)

2. Target chamber: NH3, 3cm Polarized via DNP

3. Tracking: GEM+hodoscopes, 4 symmetric quadrants

4. Calorimeters: 4 symmetric quadrants, equivalent of 2 NPS

~ 6° to 27° aperture Lumi request: 5.85 x 10⁵ pb⁻¹

Material provided by M.Boer

GPD E in a complementary way to neutron and transversely polarized DVCS

+ Ongoing measurement by GlueX on unpolarized proton

$\bullet \bullet \bullet \bullet \bullet$

Part IV:Toward the measurement of the near threshold photo-production of J/ψ using CLASI2

- Analysis initiated by J. Newton for his PhD thesis and postdoc.
- Joseph left in December and I took over the analysis since then.
- In the following I will show only the same dataset as for the TCS analysis.
- 10.6 GeV beam on Liquid H₂ target
- Accumulated charge: 37mC or 48 fb⁻¹

CLAS12 Preliminary - ee ch.

Part IV: J/ψ cross-section with CLASI 2

J/ψ photoproduction near threshold: motivations and results

16/23

• Probe the gluon content of the proton (under 2-gluon exchange assumption and no open-charm contributions discussed in the next slide)

- The t-dependence of the cross-section allow to access gluon Gravitational Form Factors (GFFs), mass radius of the nucleon (under 2-gluon exchange assumption and no open-charm contributions, see back-up). Model-dependent limit on the branching ratio of the Pc
- pentaquark. γ

Figure in Duran, B., Meziani, ZE., Joosten, S. *et al.* Determining the gluonic gravitational form factors of the proton. *Nature* 615, 813–816 (2023)

....

Projections for CLASI2 proton data

 $ep \to (e')\gamma p \to (e')J/\psi \ p' \to (X)e^+e^-p'$

- Projected statistics error bars based on full dataset available on proton target and expected improvement for tracking.
- Lower maximum photon energy than GlueX.
- Error bars are competitive with GlueX.
- t-dependence will also be extracted.

Including all data taken on unpolarized proton (150 fb⁻¹) and improved tracking efficiency (+50%)

Preliminary results for CLASI2 proton/neutron data

- Deuterium data were taken by CLAS12 in 2019/2020.
- Opportunity to measure J/ψ production on (bound) neutron and (bound) proton.
- Alongside this analysis, a framework to explore the muon decay channel was developed.
- This effort is lead by R.Tyson from University of Glasgow.

- Preliminary results for the comparison of decay channels and target nucleon.
- This measurement could have implication on understanding open-charm channels contribution.

Taken from R. Tyson PhD analysis, Univ. of Glasgow

Total Cross Section [AU]

....

Tagged J/ ψ quasi-photoproduction with CLASI2

$$ep \to e'J/\psi \ p' \to e'l^+l^-(X)$$

- Analysis conducted by M. Tenorio Pita, ODU.
- In this case, one electron in the Forward Tagger (Low lab angle <5°) and a lepton pair in CLAS12.
- Excellent cross-check of the quasiphotoproduction approach.
- Early results show low statistics, the new data "cooking" including better tracking efficiency will be beneficial for this analysis.
- Other event topologies will be explored.

- Available data for longitudinally polarized proton target

Mid term perspective with CLASI2: Luminosity upgrade

Increasing of the CLASI2 luminosity by a factor 2

Figures courtesy of Rafayel Paremuzyan

Micro-R-well technology...

...combined with increased efficiency of Al tracking

Long term perspective: Double DVCS measurment

 $ep \rightarrow e' \mu^+ \mu^- p$

µCLASI2 (Hall B) and Solid (Hall A)

- Two main challenges for DDVCS measurement:
 - Low x-section: requires high-luminosity

Summary and take-aways

- The dilepton final state allows to access fundamental properties of the nucleon (GPDs, GFFs).
- Rich experimental program at Jefferson Lab, already producing some important results
- The first extraction of Timelike Compton Scattering observables on unpolarized proton target was done using the CLASI2 detector. More results from CLASI2, GlueX, Hall A/C to come.
- Large effort to extract J/ ψ cross-section on various targets both for electron and muon final state (GlueX, Hall C, and CLAS12).
- New experiments are proposed to extend this program to DDVCS, J/ ψ electro-production, μ -TCS

BACK-UP

Positron PID

One important challenge: a clean positron identification

Pion background at large momenta

At high momenta (typically above the HTCC threshold at 4.5 GeV), both pions and leptons will emit Cherenkov light.

Al identification of the positrons

Strategy and discriminating variables

- Leptons produce electromagnetic showers and tend to deposit energy in the first layers of the calorimeters.
- Pions are Minimum Ionizing Particles in the GeV region, they deposit small amounts of energy all along their path.
- Two main characteristics to use:

$$SF_{\rm EC\ Layer} = \frac{E_{dep}({\rm EC\ Layer})}{P}$$

$$M_2 = \frac{1}{3} \sum_{U,V,W} \frac{\sum_{\text{strip}} (x - D)^2 \cdot \ln(E)}{\sum_{\text{strip}} \ln(E)}$$

Performances of AI identification of the positrons

Strategy and discriminating variables

- Leptons produce electromagnetic showers and tend to deposit energy in the first layers of the calorimeters.
- Pions are Minimum Ionizing Particles in the GeV region, they deposit small amounts of energy all along their path.
- Two main characteristics to use:

I.

$$SF_{\text{EC Layer}} = \frac{E_{dep}(\text{EC Layer})}{P}$$

2.
 $M_2 = \frac{1}{3} \sum_{U,V,W} \frac{\sum_{\text{strip}} (x-D)^2 \cdot \ln(E)}{\sum_{\text{strip}} \ln(E)}$

TCS analysis

TCS interference cross-section formulae and CFFs

Unpolarized cross-section

Formulae and notations of Berger, Diehl, Pire, Eur.Phys.J.C23:675-689,2002

$$\frac{d^4 \sigma_{INT}}{dQ'^2 dt d\Omega} \propto \frac{L_0}{L} \left[\cos(\phi) \frac{1 + \cos^2(\theta)}{\sin(\theta)} \operatorname{Re} \tilde{M}^{--} + \ldots \right]$$
$$\to \tilde{M}^{--} = \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \xi}{1 + \xi} \left[F_1 \mathcal{H} - \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right]$$

Compton Form Factors (CFFs)

$$\mathcal{H} = \int_{-1}^{1} dx H(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon}\right)$$

Polarized cross-section

$$\frac{d^4\sigma_{INT}}{dQ'^2dtd\Omega} = \frac{d^4\sigma_{INT}\mid_{\text{unpol.}}}{dQ'^2dtd\Omega} - \nu \cdot A \frac{L_0}{L} \left[\sin(\phi) \frac{1 + \cos^2(\theta)}{\sin(\theta)} \text{Im}\tilde{M}^{--} + \dots \right]$$

(Quasi-)Photoproduction events selection

1) CLAS12 PID + Positron NN PID

$$ep \to (e')\gamma p \to (X)e^+e^-p'$$

Proton identification

Lepton identification

Cherenkov counters

+ Calorimeter energy deposition

Sampling Fraction = $\frac{E_{dep}}{P}$

First observable: the photon polarization asymmetry

Definition

$$A_{\odot U} = \frac{d\sigma^{+} - d\sigma^{-}}{d\sigma^{+} + d\sigma^{-}} = \frac{-\frac{\alpha_{em}^{3}}{4\pi s^{2}} \frac{1}{-t} \frac{m_{p}}{Q'} \frac{1}{\tau \sqrt{1-\tau}} \frac{L_{0}}{L} \sin \phi \frac{(1+\cos^{2}\theta)}{\sin(\theta)} \mathrm{Im}\tilde{M}^{--}}{d\sigma_{BH}}$$

Measurement

$$A_{\odot U}(-t, E\gamma, M; \phi) = \frac{1}{P_b} \frac{N^+ - N^-}{N^+ + N^-} \text{ where } N^{\pm} = \sum \frac{1}{Acc} P_{trans.}$$

- $P_{trans.}$ is the transferred polarization from the electron to the photon, fully calculable in QED. Olsen, Maximon, Phys. Rev. I 14 (1959)
- P_b is the polarization of the electron beam at 85%.
- The obtained distributions of $A_{\odot U}(-t;\phi)$ are then fitted with a sine function.

Second observable: the Forward/Backward asymmetry

Forward/Backward correspondence:

$$k \leftrightarrow k' \iff (\theta, \phi) \leftrightarrow (180^{\circ} - \theta, 180^{\circ} + \phi)$$

Effect on cross-sections

$$\frac{d\sigma_{BH}}{dQ^2 dt d\Omega} \propto \frac{1 + \cos^2 \theta}{\sin^2 \theta} \xrightarrow{FB} \frac{d\sigma_{BH}}{dQ^2 dt d\Omega}$$
$$\frac{d^4 \sigma_{INT}}{dQ'^2 dt d\Omega} \propto \frac{L_0}{L} \cos(\phi) \frac{1 + \cos^2(\theta)}{\sin(\theta)} \xrightarrow{FB} - \frac{d\sigma_{INT}}{dQ^2 dt d\Omega}$$

Jefferson Lab

Observable definition

$$A_{FB}(\theta_0,\phi_0) = \frac{d\sigma(\theta_0,\phi_0) - d\sigma(180^\circ - \theta_0, 180^\circ + \phi_0)}{d\sigma(\theta_0,\phi_0) + d\sigma(180^\circ - \theta_0, 180^\circ + \phi_0)} = \frac{-\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{m_p}{Q'} \frac{1}{\tau\sqrt{1-\tau}} \frac{L_0}{L} \cos\phi_0 \frac{(1+\cos^2\theta_0)}{\sin(\theta_0)} \operatorname{Re}\tilde{M}^{--}}{d\sigma_{BH}(\theta_0,\phi_0) + d\sigma_{BH}(180^\circ - \theta_0, 180^\circ + \phi_0)}$$

- Concept initially explored for J/ψ production (Gryniuk, Vanderhaeghen, *Phys. Rev. D*, 2016)
- Exploratory studies for TCS performed alongside this work
- Predictions for TCS have been published very recently + LO radiative correction negligible (Heller, Keil, Vanderhaeghen, Phys. Rev. D, 2021)

J/ψ analysis

J/ψ (quasi-)photoproduction events selection

Can we do the same as for TCS ? In principle yes...

1) CLAS12 PID + Positron NN PID

$$ep \to (e')\gamma p \to (e')J/\psi \ p' \to (X)e^+e^-p'$$

$$p_X = p_{beam} + p_p - p_{e^+} - p_{e^+} - p_{p'} \longrightarrow 2) |M_X^2| < 0.4 GeV^2 \longrightarrow 3) |\frac{Pt_X}{P_X}| < 0.05$$

In practice, it is not so simple

CLAS12 Preliminary

Background removal procedure

Sample contents

Opposite charge leptonsSame charge leptonsBackground final states $(\pi^+ \to e^+)$ Physics final state
 $e^-e^+p'(e')$ $ep \to p'e^-e^-(X \simeq e)$ $e'p'e^+(e^-+X) + e'p'\pi^+(\pi^-+X)$ $e^-e^+p'(e')$ $ep \to p'e^-e^-(X \simeq e)$ $N(e^+e^-p') = n_S(e^+e^-) + n_{BG}(e'e^+/\pi^+)$ $e'p'\pi^-(\pi^++X) + e'p'e^-(e^++X)$

$$\begin{split} R^{in} &= \frac{N^{in}(e'e^{-}p')}{N^{in}(e^{+}e^{-}p')} = \frac{a^{2} \cdot \sigma_{BG}}{a \cdot b \cdot \sigma_{BG+S}} = \frac{a \cdot \sigma_{BG}}{b \cdot \sigma_{BG+S}} \\ R^{out} &= \frac{N^{out}(e'e^{-}p')}{N^{out}(e^{+}e^{-}p')} = \frac{b^{2} \cdot \sigma_{BG}}{a \cdot b \cdot \sigma_{BG+S}} = \frac{b \cdot \sigma_{BG}}{a \cdot \sigma_{BG+S}} \\ w &= \frac{S}{(S+B)_{In}} = 1 - \frac{N_{e^{-}e^{-}p}}{N_{e^{-}e^{+}p}} \frac{b}{I_{In}} = 1 - \sqrt{\frac{N_{e^{-}e^{-}p}}{N_{e^{-}e^{+}p}} \frac{N_{e^{-}e^{-}p}}{N_{e^{-}e^{+}p}}} \\ \end{split}$$

Jefferson Lab

Photon flux and accumulated charge

- Number of photons (from accumulated charge and photon flux from QED)
- Number of targets (from the density of dihydrogen and length of the target)

.....

Motivations to measure J/ ψ photoproduction near threshold: the open-charm "issue"

38/36

Open-charm "issue"

- The previous considerations rely on the application of Vector Meson Dominance.
- Thus the contribution from open-charm meson channels must be ruled-out/understood.

Part IV: J/ψ cross-section with CLASI2

....

Background subtracted data using same-charge lepton events

- Opposite charge leptons Background final states $(\pi^+ \rightarrow e^+)$ $e'p'e^+(e^- + X) + e'p'\pi^+(\pi^- + X)$ $N(e^+e^-p') = n_S(e^+e^-) + n_{BG}(e'e^+/\pi^+)$
- Same charge leptons

 $ep \to p'e^-e^-(X \simeq e)$ $e'p'\pi^-(\pi^+ + X) + e'p'e^-(e^+ + X)$

 Background correction weight, combining inbending and outbending data:

$$w = \frac{n_S}{(n_S + n_{BG})} = 1 - \sqrt{\frac{N_{e^- e^- p}}{N_{e^+ e^- p}}} \Big|_{In} \frac{N_{e^- e^- p}}{N_{e^+ e^- p}} \Big|_{Out}$$

Cross-section extraction

•

Deuterium target and muon final state

Bound proton **Bound** neutron e+ e- Invariant Mass e+ e- Invariant Mass J/ψ Yield 224.2 ± 27.5 J/ψ Yield 151.9 ± 26.2 3.063 ± 0.005 Mean Mean 3.095 ± 0.004 120 0.05402 ± 0.00726 0.02802 ± 0.0051 100 1st order coef 81.44 ± 8.41 1st order coef 1837+99 2nd order coef -157 ± 22.9 2nd order coet -212.5 ± 61.6 100 82.84 ± 68.00 3rd order coef 3rd order coef -51.59 ± 149.53 13.8 ± 2.2 80 37.6 ± 2.9 80 60 20 3.3 3.4 3. Invariant Mass [GeV] 26 27 28 29 3.1 3.2 3.3 3.4 2.9 3.1 3.2 Invariant Mass [GeV] μ+ μ- Invariant Mass μ+ μ- Invariant Mass J/ψ Yield 37.47 ± 12.09 J/ψ Yield 130.9 ± 26.7 Mean 3.082 ± 0.008 Mean 3.082 ± 0.006 0.04414 ± 0.00739 0.03251 ± 0.00988 50 1st order coef 1st order coef 61.74 ± 9.44 25.52 ± 7.10 2nd order coef -68.22 ± 35.84 -275 ± 64.0 2nd order coef 3rd order coef 57.09 ± 124.49 424.3 ± 195.9 3rd order coef 4.061 ± 1.271 6.414 ± 2.563 40 30 20 3.1 2.9 3.2 3.3 3.1 3.2 3.3 3.4 3. Invariant Mass [GeV] Invariant Mass [GeV]

Taken from R. Tyson PhD analysis, Univ. of Glasgow

- Deuterium data were taken by CLAS12 in 2019/2020.
- Opportunity to measure J/ψ production on (bound) neutron and (bound) proton.
- Alongside this analysis, a framework to explore the muon decay channel was developed.
- This effort is lead by R.Tyson from University of Glasgow.