

Generalized Parton Distributions and Global Analysis 12-14 June 2023

DVCS EXPERIMENTS FROM JEFFERSON LAB TO THE EIC

CHARLES E. HYDE OLD DOMINION UNIVERSITY

HALL A/C DVCS & π^0 AT 12 GEV

- E12-06-114
 - DVCS: F.Georges et al, *Phys.Rev.Lett.* **128** (2022) 25, 252002
 - Deep π⁰ *Phys.Rev.Lett.* **127** (2021) 15, 152301
 - 50% complete, 38 PAC days added to Hall-C NPS in Jeopardy review
- NPS Run August 2023-March 2024
 - E12-13-010 Hydrogen (53 days)
 - E12-22-006: Deuterium (44 days)
- Future NPS runs on Wide Angle (real) Compton Scattering

HALL A/C PAST, PRESENT, and FUTURE DVCS

- Mostly to be completed by 2024
 - Possibly ~40 days still pending after first NPS run.
- Some kinematic adjustments for actual beam energies (e.g. 10.4, 10.6 GeV, rather than 11 GeV)

HALL A 12 GEV DVCS RESULTS: F.Georges et al, *Phys.Rev.Lett.* **128** (2022) 25, 252002

- Analyzed in terms of W.Braun, et al formalism.
 - Light cone defined by q & q' (virtual photon and emitted real photon)
 - Helicity CFFs: $H_{\lambda,\lambda}$. $E_{\lambda,\lambda}$. $\tilde{H}_{\lambda,\lambda}$. $\tilde{E}_{\lambda,\lambda}$
 - Hypothesis: at fixed x_B , each CFF is independent of Q^2
 - Neglect QCD evolution
 - All higher-twist effects are contained in helicity flip CFFs:
 - Real & Imaginary parts of CFFs extracted from E_e, Q², $\phi_{\gamma\gamma}$ dependence of kinematic factors at fixed x_B

HALL A DVCS RESULTS @12 GEV

PHYSICAL REVIEW LETTERS 128, 252002 (2022)

TABLE I. Main kinematic variables for each of the nine (Q^2, x_B) settings where the DVCS cross section is reported. E_b is the incident electron energy, E_{γ} and $-t_{\min}$ correspond to a final state photon emitted parallel to $\mathbf{q} = \mathbf{k} - \mathbf{k}'$ at the nominal Q^2 , x_B values listed. For each setting, the cross section is measured as a function of t (3 to 5 bins depending on the setting) and in 24 bins in ϕ . The accumulated charge, corrected by the acquisition dead time, is listed in the row labeled $\int Q dt$. The last row of the table indicates the number of statistically independent measurements (bins) for each x_B setting, including helicity dependence.

Setting	Kin-36-1	Kin-36-2	Kin-36-3	Kin-48-1	Kin-48-2	Kin-48-3	Kin-48-4	Kin-60-1	Kin-60-3
x_B	0.36			0.48				0.60	
E_b (GeV)	7.38	8.52	10.59	4.49	8.85	8.85	10.99	8.52	10.59
Q^2 (GeV ²)	3.20	3.60	4.47	2.70	4.37	5.33	6.90	5.54	8.40
\widetilde{E}_{γ} (GeV)	4.7	5.2	6.5	2.8	4.7	5.7	7.5	4.6	7.1
$-t_{\rm min}$ (GeV ²)	0.16	0.17	0.17	0.32	0.34	0.35	0.36	0.66	0.70
$\int Qdt$ (C)	1.2	1.7	1.3	2.2	2.2	3.7	5.7	6.4	18.5
Number of data bins	672			912				480	

• Helicity conserving terms *e.g.* \mathcal{H}_{++} shown, error bands include effects of \mathcal{H}_{0+} and \mathcal{H}_{-+}

FIG. 4. Values of the helicity-conserving CFFs, averaged over *t*, as a function of x_B . Bars around the points indicate statistical uncertainty and boxes show the total systematic uncertainty. The fit results of previous data [19] at $x_B = 0.36$ are displayed with the open markers. The average *t* values are -0.281 GeV² [19] and -0.345, -0.702, -1.050 GeV² at $x_B = 0.36$, 0.48, 0.60, respectively. The solid lines show the KM15 model [29].

DEEP π^{0}

- Hall A 6 GeV L/T separations show Transverse-dominance
 - T-enhancement from χ SB: Liutti et al, Goloskokov & Kroll
 - Access to Transversity GPDs
 - Supported by $\varepsilon \sigma_L + \sigma_T$, σ_{TL} , σ_{TT} results from CLAS
 - 12 GeV L/T separations planned with NPS run 2023-2024
- Flavor separations from D + H data and η -production (CLAS)

DVCS @ CLAS12

- RG-A Hydrogen Target (200 days approved, plus RG-K)
 - ~50% of data acquired
- RG-B Deuterium Target (90 days approved)
 - ~50% of data acquired
- RG-C Longitudinally polarized LH₃ and LD₃ (80 days approved).
 - 100% data taking completed March 2023
- RG-L "ALERT" active and/or spectator tagging for n/p DVCS and coherent DVCS on D, He targets.

CLAS12: RUN GROUP A:

CLAS 12 phase space and relative count rate. (6 GeV in red)

• H(e,e'pγ)

~50% of available statistics,
 ~25% of total projected statistics

PHYSICAL REVIEW LETTERS 130, 211902 (2023)

FIG. 5. Beam-spin asymmetries for bins only reachable with a ~10 GeV electron beam, compared with the KM15, GK, and VGG GPD models. The kinematics listed are approximate; point-by-point kinematics are available in the tables of the Supplemental Material for the full dataset [40]. In the last bin, Hall A asymmetries have been computed from the data published in [22] at $Q^2 = 5.36 \text{ GeV}^2$, $x_B = 0.48$, and $t = -0.51 \text{ GeV}^2$.

EIC DESIGN ep LUMINOSITY

D.Xu, et al, https://doi:10.18429/JACoW-IPAC2022-WEIXGD1

- Full Luminosity with **Strong Hadron Cooling** (SHC)
- https://doi.org/10.1842 9/JACoW-IPAC2022-WEIXGD1 "Collisions will occur at a range of center-of-mass energies between 29 GeV and 140 GeV"

12 June 2023

PROTON DVCS @ EIC

• ECCE Simulations $ep \rightarrow ep\gamma$

- Acceptance in -t<0.25 GeV² is achieved with special "high acceptance" tune (larger β*) to reduce angular spread at target. Factor of ≥2 lower Lumi.
- To my knowledge, no detailed simulations of CFF sensitivity yet.
- Longitudinally & transversely polarized protons!

Figure 33: Projected DVCS differential cross-section measurements as a function of the momentum transfer -t for different bins in Q^2 and x_B . The assumed integrated luminosity is 10 fb⁻¹ for each beam energy configuration.

EIC ep and eA LUMINOSITY

W.Fischer, IPAC2021 "High Acceptance" tune require to achieve low-t acceptance for DVCS

Figure 1: EIC e-A luminosity L_{eN} for N = p, d, h, Cu, Au and U beams, all with Strong Hadron Cooling. Part (a) shows the luminosities for the High Acceptance limits imposed on the angular beam spreads $\sigma'_{A,x,y,\text{max}}$ at the Interaction Point (Table 2), and part (b) for the High Divergence limits. With Strong Hadron Cooling the peak and average store luminosity are close. The e-p reference case data are taken from Ref. [1].

NEUTRON DVCS @ EIC

- Polarized ³He (longitudinal & transverse, ~80%)
 - Di-proton spectators from neutron DVCS in ³He emerge near Odeg with rigidity (P/Q) = 66% of beam→detected in "Off Momentum Trackers in farforward region ≥ 20m from IP
 - Active neutron detectable in ~4mr cone --> -D2<0.5 GeV2 at 183 GeV/n.
 Possible veto of breakup channels.
- Un-polarized deuteron beams are a day-one feature
 - Polarized *d* is an upgrade dream, but not impossible.

NUCLEAR DVCS @ EIC

- The EIC ion storage ring determines the magnetic rigidity P₀ of a stored ion.
 - Total ion momentum is ZP₀
 - Final focus quads & emittance determine angular spread $\sigma(\theta) \approx 0.3$ mrad at IP.
 - Ion rms $P_T = ZP_0 \sigma(\theta)$: Completely washes out diffraction patterns of nuclei.
 - Reconstruct momentum transfer to nucleus without nuclear detection.
 - Rapidly lose ability to detect recoil nuclei at reasonable Δ^2 values
- Exclusive Vector meson production. Channels with all charged particles:
 - (e,e' $\rho \rightarrow \pi^+\pi^-$), (e,e' $\phi \rightarrow K^+K^-$), (e,e'J/ $\Psi \rightarrow e^+e^-$ or $\mu^+\mu^-$)
 - Directly measure $\Delta^{\mu} = (k k' V)^{\mu}$ with central tracker
- DVCS: $^{A}Z(e,e'\gamma) ^{A}Z$ feasible only with excellent γ -resolution

NUCLEAR DVCS WITH A 2ND EIC DETECTOR

- Downstream focus in ion beam line enables tagging/veto of all possible breakup nuclei of beams from D to Zr, and all A-2 daughters up to U.
- 2nd detector offers opportunity for high resolution EMCal in barrel
 - Black points show PbWO₄ resolution

α DVCS

- TOPEG event generator <u>https://gitlab.in2p3.fr/dupre/nopeg</u> 10 GeV e⁻ Ø 137.5 GeV per nucleon
- DELPHES FastMC: hypothetical PbWO₄ EMCal for η <0
- Systematic uncertainty in reconstructed cross section estimated by varying EMCal resolution by ±10%
- Error bars from uncertainty of bin-migration remain small.

NUCLEAR DVCS SIMULATIONS

- Need new MC event generators
 - TOPEG is great, but infinitely slow if Re[CFF] is included
- Need generators (even simplistic) for a range of nuclei
 - ¹²C, ¹⁶O, ... ^{40,48}Ca, ... Zr, Pb
 - The significance of the veto powers of the 2nd focus in IR-8 (2nd Detector) grows rapidly with Z.

DOUBLE DVCS

- Severely Count Rate limited
 - Best case (my opinion) low Q², "measure" slightly off diagonal, *i.e.* x=±(ξ - ε): $GPD(\xi^-,\xi,t) \pm GPD(-(\xi^-),-\xi,t)$
 - GPD has discontinuity in slope at $x=\pm\xi$ (D-term)

CONCLUSIONS

- Need to understand/control impact of higher-twist observables
- We will always only have a discrete number of local averages of CFFs from experiments
 - Need a realistic assessment of possible constraints on GPDs from data, Lattice QCD, etc.
 - Also consider the physics content of the CFFs themselves: Transitions amplitudes (not probabilities) of $x+\xi \rightarrow x-\xi$

MORE SLIDES

FORWARD TAGGING IN EPIC

- Proton DVCS detected by insertable `Roman Pot' (RP) trackers, fixed `Off Momentum Detectors' (OMD), and/or B0 (dipole) tracker
- Spectator protons from *e.g.* ³He in RP or OMD

Hall A 12 GeV DVCS: cross sections

- Dataset sample multidimensional binning:

 3 x_B bins ×
 2-4 Q² bins ×
 3-5 t bins ×
 24 φ bins
- More than 2000 data points in Q², x_B , t and ϕ

12 June 2023 21

C. Hyde