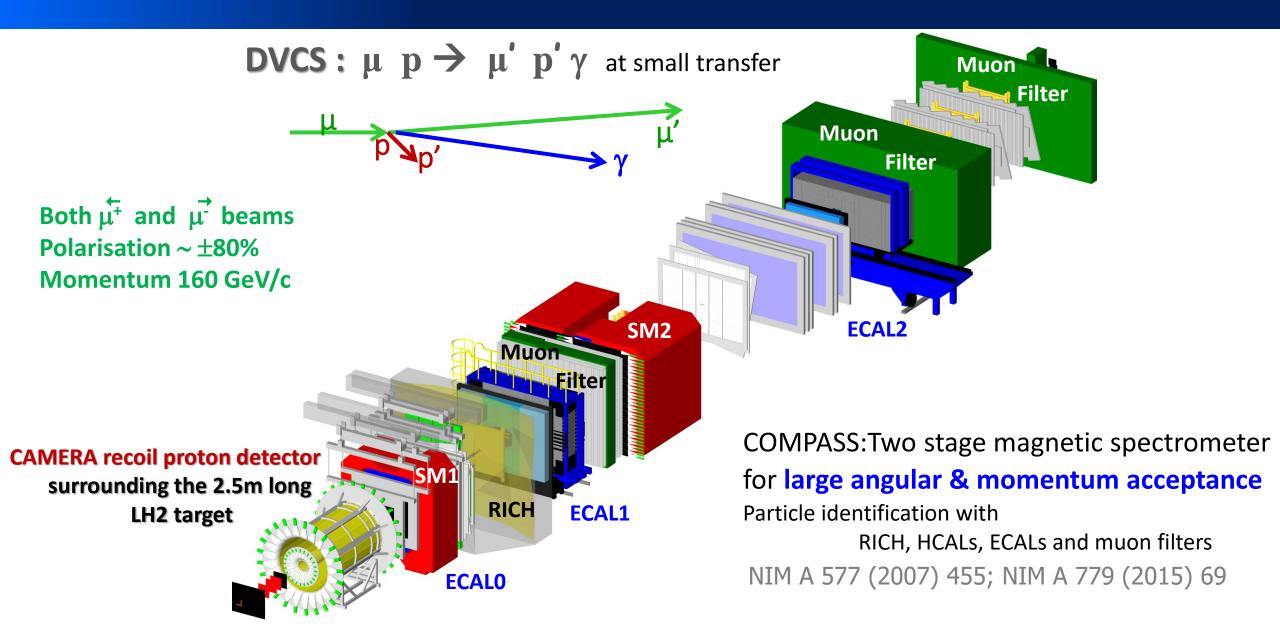

Hard Exclusive Reactions at COMPASS at CERN

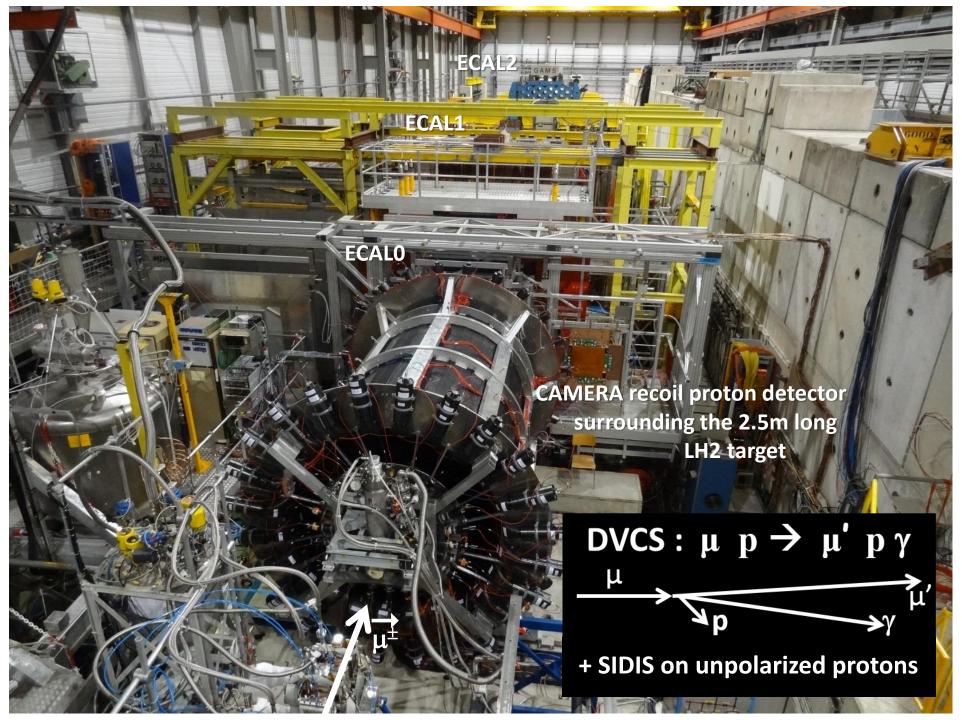
Exclusive photon (DVCS) and meson (HEMP) production

at small transfer for GPD studies

DVCS: $\mu p \rightarrow \mu' p' \gamma$

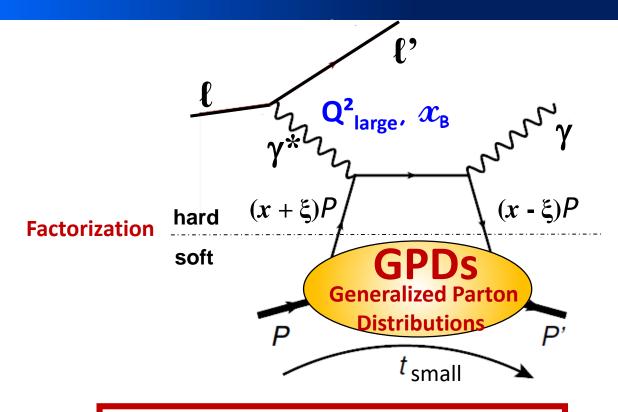
Pseudo-Scalar Meson : $\mu p \rightarrow \mu' p' \pi^0$


Vector Meson: μ $p \rightarrow \mu'$ $p' \rho$ or ω or ϕ ...


Nicole d'Hose - CEA Université Paris-Saclay for the COMPASS Collaboration

CNF Generalized Parton Distributions and Global Analysis

Measurement of exclusive cross sections at COMPASS



2012:

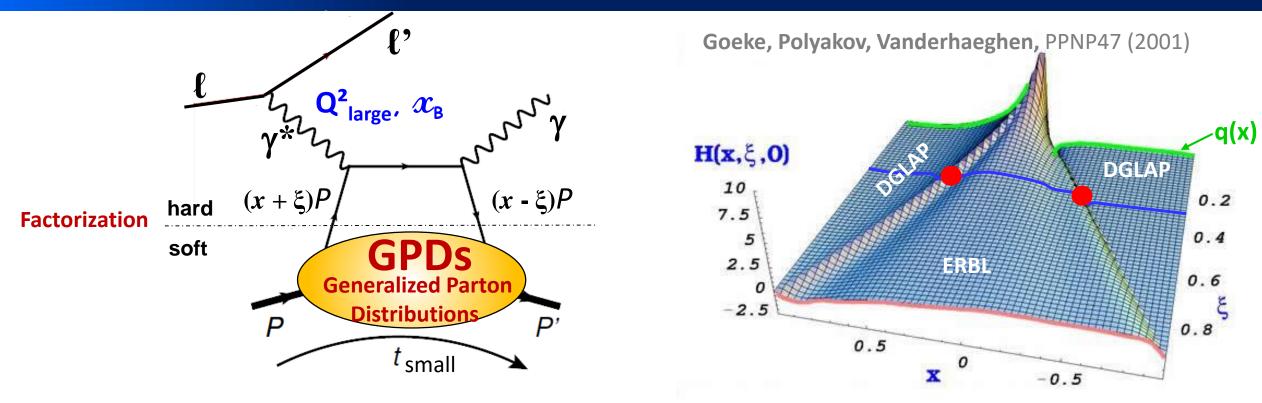
1 month pilot run

2016 -17:

2 x 6 month data taking

The GPDs depend on the following variables:

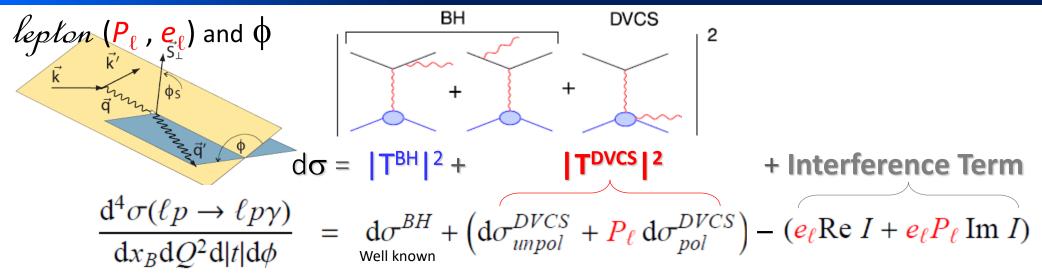
x: average quark longitudinal ξ : transferred momentum fraction


t: proton momentum transfer squared related to b_{\perp} via Fourier transform Q^2 : virtuality of the virtual photon

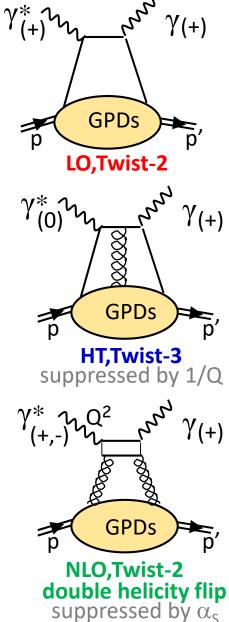
D. Mueller *et al,* Fortsch. Phys. 42 (1994) **X.D. Ji**, PRL 78 (1997), PRD 55 (1997) **A. V. Radyushkin**, PLB 385 (1996), PRD 56 (1997)

DVCS: $\ell p \rightarrow \ell' p' \gamma$ the golden channel because it interferes with the Bethe-Heitler process also meson production $\ell p \rightarrow \ell' p' \pi, \rho, \omega \text{ or } \phi \text{ or } J/\psi...$

The variables measured in the experiment:


$$E_{\ell}$$
, Q^2 , $x_B \sim 2\xi$ /(1+ ξ),
t (or $\theta_{\gamma^*\gamma}$) and ϕ ($\ell\ell'$ plane/ $\gamma\gamma^*$ plane)

The amplitude DVCS at LT & LO in α_s (GPD \mathbf{H}): Real part Imaginary part


$$\mathcal{H} = \int_{t, \, \xi \, \text{fixed}}^{+1} dx \, \frac{H(x, \xi, t)}{x - \xi + i \, \epsilon} = \mathcal{P} \int_{-1}^{+1} dx \, \frac{H(x, \xi, t)}{x - \xi} \, - i \, \pi \, H(x = \pm \, \xi, \, \xi, \, t)$$

In an experiment we measure Compton Form Factor ${\mathcal H}$

With unpolarized target:

Belitsky, Müller, Kirner, NPB629 (2002)

With both μ^{+} and μ^{-} beams we can build:

• beam charge-spin sum

$$\Sigma \equiv d\sigma \stackrel{+}{\leftarrow} + d\sigma \stackrel{-}{\rightarrow}$$

2 difference

$$\Delta \equiv d\sigma \leftarrow -d\sigma \rightarrow$$

$$d\sigma^{BH} \propto c_0^{BH} + c_1^{BH} \cos \phi + c_2^{BH} \cos 2\phi$$

$$d\sigma_{unpol}^{DVCS} \propto c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi$$

$$d\sigma_{pol}^{DVCS} \propto s_1^{DVCS} \sin \phi$$

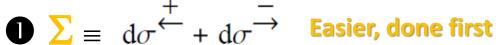
$$Re I \propto c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi$$

$$Im I \propto s_1^I \sin \phi + s_2^I \sin 2\phi$$

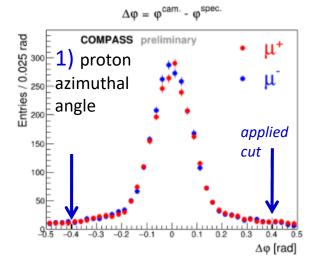
$$\sum \equiv d\sigma^{+} + d\sigma^{-} \rightarrow s_{1}^{I} \propto Im \mathcal{F}$$
and $c_{0}^{\text{DVCS}} \propto (Im\mathcal{H})^{2}$

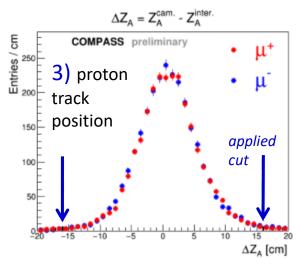
$$\Delta \equiv d\sigma \stackrel{+}{\leftarrow} - d\sigma \stackrel{-}{\rightarrow} \rightarrow c_1^I \propto Re \, \mathcal{F}$$

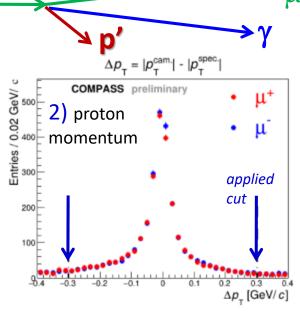
$$\mathbf{F} = \mathbf{F}_1 \mathbf{H} + \xi (\mathbf{F}_1 + \mathbf{F}_2) \mathbf{H} - t/4m^2 \mathbf{F}_2 \mathbf{E}$$
for proton
$$\rightarrow \mathbf{F}_1 \mathbf{H}$$
at small \mathbf{x}_B
COMPASS domain

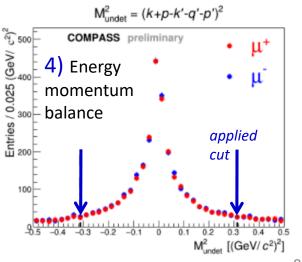

COMPASS 2016 data Selection of exclusive single photon production

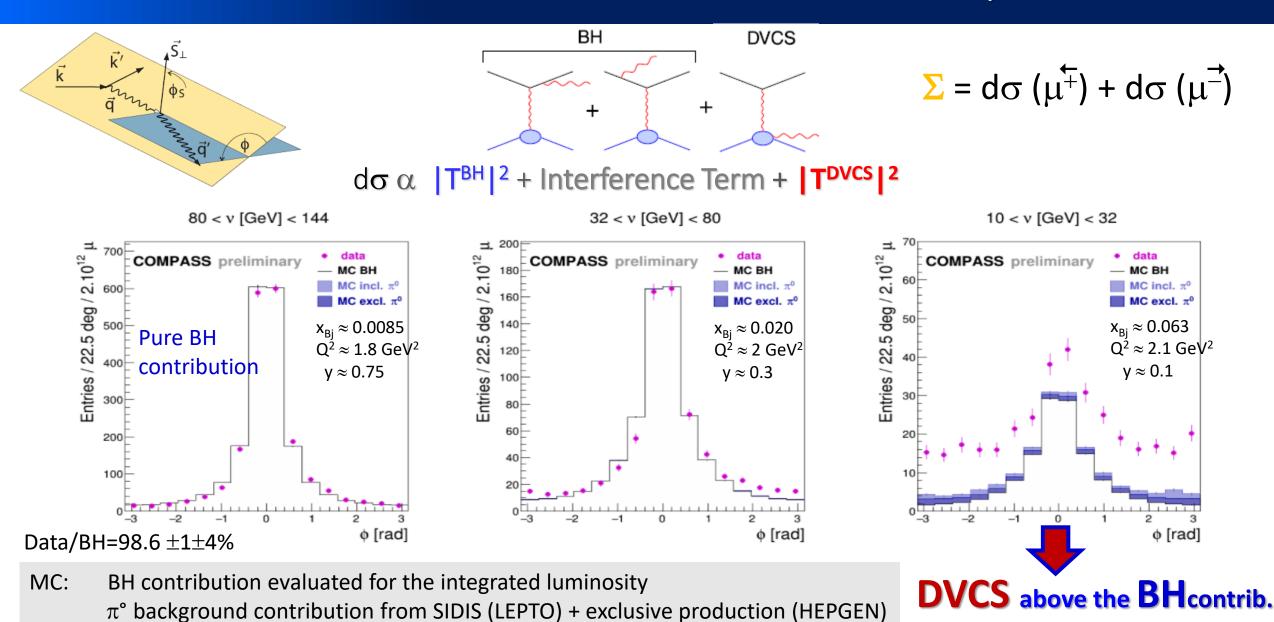
Comparison between the observables given by the spectro or by CAMERA


DVCS: μ p \rightarrow μ' p γ


- 1) $\Delta \varphi = \varphi^{\text{cam}} \varphi^{\text{spec}}$
- 2) $\Delta p_T = p_T^{cam} p_T^{spec}$
- 3) $\Delta z_A = z_A^{cam} z_A^{Z_B and vertex}$
- **4)** $M^2_{X=0} = (p_{\mu_{in}} + p_{p_{in}} p_{\mu_{out}} p_{p_{out}} p_{\gamma})^2$


Good agreement between $\vec{\mu}$ and $\vec{\mu}$ yields Important achievement for:





COMPASS 2016 data

DVCS+BH cross section at Eµ=160 GeV

9

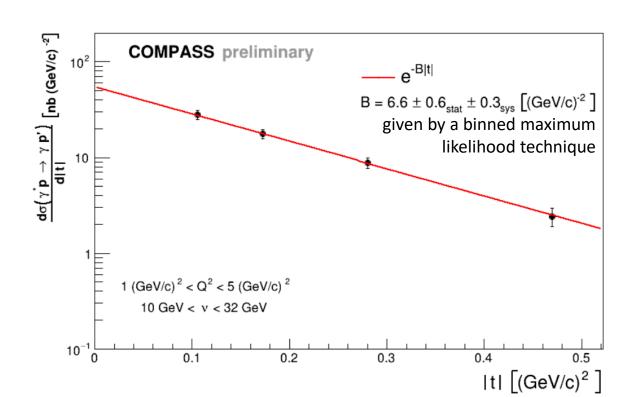
COMPASS 2016

DVCS cross section for $10 < \upsilon < 32$ GeV

At COMPASS using polarized positive and negative muon beams:

$$\sum_{i} = d\sigma^{+} + d\sigma^{-} = 2[d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + Im I]$$

$$= 2[d\sigma^{BH} + c_{0}^{DVCS}] + c_{1}^{DVCS} \cos \phi + c_{2}^{DVCS} \cos 2\phi + s_{1}^{I} \sin \phi + s_{2}^{I} \sin 2\phi]$$

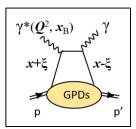

calculable can be subtracted

All the other terms are cancelled in the integration over ϕ

$$\frac{\mathrm{d}^3 \sigma_{\mathrm{T}}^{\mu p}}{\mathrm{d} Q^2 \mathrm{d} \nu dt} = \int_{-\pi}^{\pi} \mathrm{d} \phi \, \left(\mathrm{d} \sigma - \mathrm{d} \sigma^{BH} \right) \propto c_0^{DVCS}$$

$$\frac{\mathrm{d}\sigma^{\gamma^* p}}{\mathrm{d}t} = \frac{1}{\Gamma(Q^2, \nu, E_\mu)} \frac{\mathrm{d}^3 \sigma_{\mathrm{T}}^{\mu p}}{\mathrm{d}Q^2 \mathrm{d}\nu dt}$$

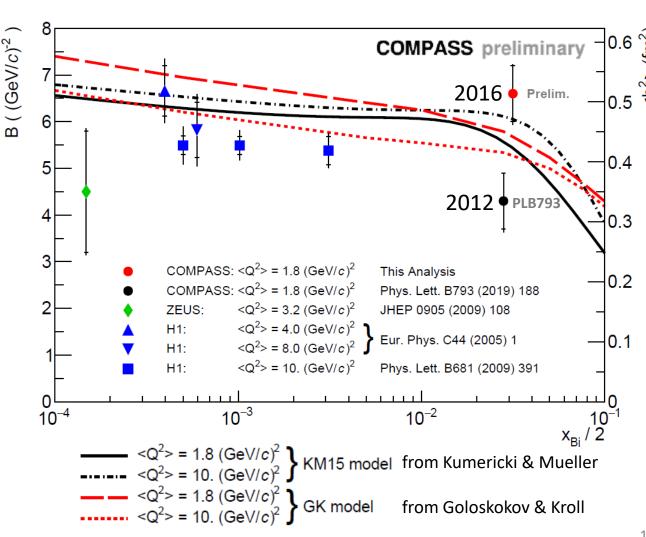
Flux for transverse virtual photons


COMPASS 12-16 Transverse extention of partons in the sea quark range

$$d\sigma^{DVCS}/dt = e^{-B|t|} = c_0^{DVCS} \propto (Im\mathcal{H})^2$$

$$c_0^{DVCS} \propto 4(\mathcal{H}\mathcal{H}^* + \tilde{\mathcal{H}}\tilde{\mathcal{H}}^*) + \frac{t}{M^2}\mathcal{E}\mathcal{E}^*$$

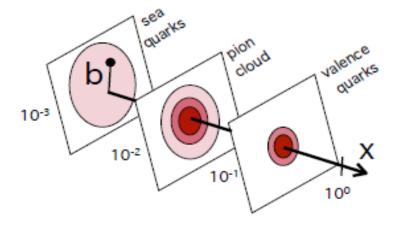
In the COMPASS kinematics, $x_B \approx 0.06$, dominance of $Im\mathcal{H}$ 97% (GK model) 94% (KM model)


$$Im\mathcal{H} = H(x=\xi, \xi, t)$$

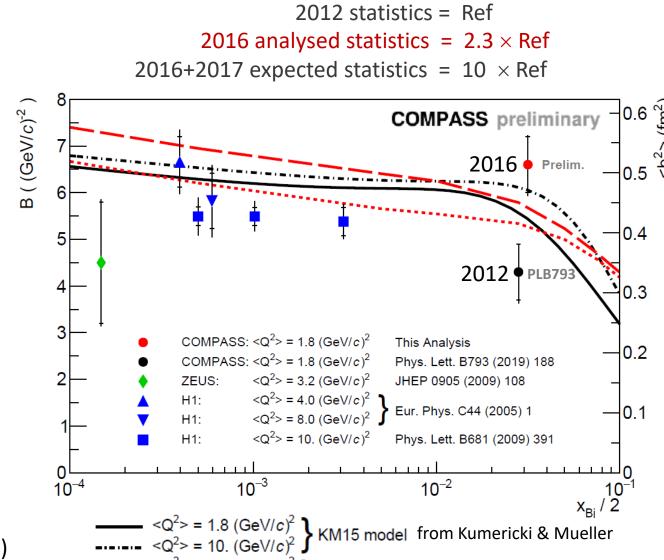
 $x = \xi \approx x_B/2$ close to 0

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}_{\perp}}{(2\pi)^2} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}} H_{-}^q(x, 0, -\mathbf{\Delta}_{\perp}^2).$$

$$\left\langle b_{\perp}^{2}\right\rangle _{x}^{f}=\frac{\int d^{2}b_{\perp}b_{\perp}^{2}q_{f}\left(x,b_{\perp}\right)}{\int d^{2}b_{\perp}q_{f}\left(x,b_{\perp}\right)}\left.=-4\frac{\partial}{\partial t}\log H^{f}\left(x,\xi=0,t\right)\right|_{t=0}$$


$$\left\langle b_{\perp}^{2}(x)\right\rangle \approx2B\left(\xi\right)$$

COMPASS 12-16 Transverse extention of partons in the sea quark range


$$d\sigma^{DVCS}/dt = e^{-B|t|} = c_0^{DVCS} \propto (Im\mathcal{H})^2$$

$$\left\langle b_{\perp}^{2}(x)\right\rangle pprox 2B\left(\xi\right)$$

 3σ difference between 2012 and 2016 data

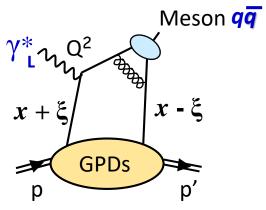
- > more advanced analysis with 2016 data
- $\triangleright \pi^0$ contamination with different thresholds
- \triangleright binning with 3 variables (t,Q²,v) or 4 variables (t, ϕ ,Q²,v)

from Goloskokov & Kroll

Possible next steps for DVCS

- ✓ DVCS and the sum $\sum = d\sigma^{+} + d\sigma^{-}$
 - $\rightarrow c_0 \sim (\text{Im}\mathcal{H})^2$ final conclusion using all the data sets 2012, 2016, 2017
 - $\rightarrow s_1 \sim \text{Im}\mathcal{H}$

constrain on $Im\mathcal{H}$ and Transverse extension of partons


- ✓ DVCS and the difference $\triangle = d\sigma^{+} d\sigma^{-}$
 - $ightharpoonup c_1$ and constrain on $m Re \mathcal{H}$ (>0 as H1 or <0 as HERMES) for D-term and pressure distribution

GPDs and Hard Exclusive Meson Production

Factorisation proven only for σ_L

The meson wave function
Is an additional non-perturbative term

Quark contribution

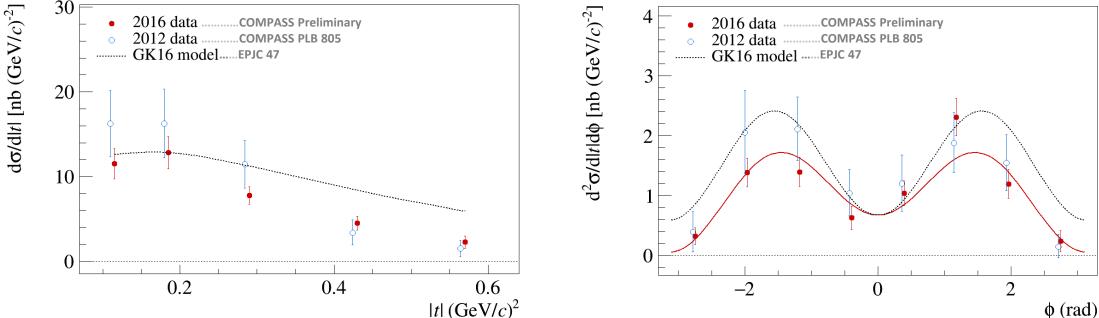
For Pseudo-Scalar Meson, as π^0

chiral-even GPDs: helicity of parton unchanged

$$\widetilde{\mathbf{H}}^q(x,\,\xi,\,\mathsf{t})$$
 $\widetilde{\mathbf{E}}^q(x,\,\xi,\,\mathsf{t})$

+ chiral-odd or transversity GPDs: helicity of parton changed

$$\mathbf{H}_{\mathbf{T}}^{q}(x, \xi, t)$$
 (as the transversity TMD)


$$\mathbf{E}_{\mathbf{T}}^{q} = \mathbf{2} \ \mathbf{H}_{\mathbf{T}}^{q} + \mathbf{E}_{\mathbf{T}}^{q}$$
 (as the Boer-Mulders TMD)

 σ_T is asymptotically suppressed by $1/Q^2$ but large contribution observed GK model: k_T of q and \overline{q} and Sudakov suppression factor are considered Chiral-odd GPDs with a twist-3 meson wave function

COMPASS 2012 - 16 Exclusive π^0 production on unpolarized proton

 $x_{R} = 0.093$

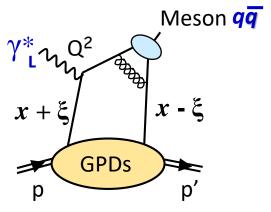
$\mu^{\pm} p \rightarrow \mu^{\pm} \pi^{0} p$ **COMPASS** $+\epsilon\cos 2\phi_{\pi}$ $Q^2 = 2.0 \text{ GeV}^2$ $F\pi^0 = 2/3F^u + 1/3 F^d$ $|t| \sim 0.26 \text{ GeV}^2$ $\frac{d\sigma_T}{dt} \propto \left| \langle H_T \rangle \right|^2 - \frac{t'}{8m^2} \left| \langle \bar{E}_T \rangle \right|^2$ close to 1 8.5 < v < 26 GeV $1 < Q^2 < 5 \text{ GeV}^2$ $_{0} = (-6.1 \pm 1.3_{\text{stat}}^{+0.7}_{-0.7}|_{\text{sys}}) \frac{\text{ms}}{(\text{GeV}/c)^{2}}$ $\left\langle \frac{\mathrm{d}\sigma_T}{\mathrm{d}|t|} + \epsilon \frac{\mathrm{d}\sigma_L}{\mathrm{d}|t|} \right\rangle = (8.2 \pm 0.9_{\mathrm{stat}}^{+1.2}_{-1.2}|_{\mathrm{sys}}) \frac{\mathrm{nb}}{(\mathrm{GeV}/c)^2}$ $= (1.5 \pm 0.5_{\text{stat}} + 0.3_{\text{sys}})^{+0.3}$ PLB 805 (2020) σ_{TT} large - impact of E_{T} σ_{IT} small but significantly positive as at CLAS 2016 data 2016 dataCOMPASS Preliminary 2012 data **COMPASS PLB 805** 2012 data COMPASS PLB 805 GK16 model.....EPJC 47 GK16 modelEPJC 47 20

Models: **GK** Kroll Goloskokov EPJC47 (2011) Also **GGL**: Golstein Gonzalez Liuti PRD91 (2015) ¹⁵ Data: **COMPASS**, PLB 805 (2020)

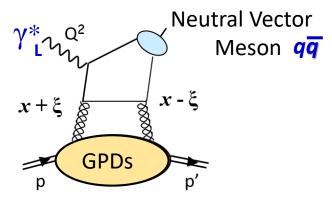
Next steps for pi0

Analysis of the 2016 data set should be completed by the end of the month

Extended kinematical domain at small and large v to provide x_B evolution 8.5 < v < 26 GeV


The 2017 data set will still increase the statistics

GPDs and Hard Exclusive Meson Production


Factorisation proven only for σ_L

The meson wave function
Is an additional non-perturbative term

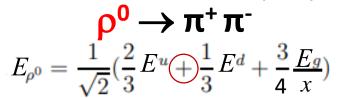
Quark contribution

Gluon contribution at the same order in α_s

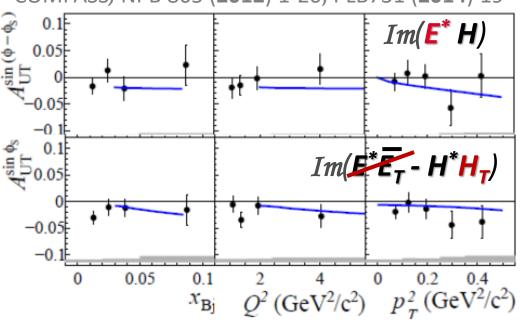
For Vector Meson, as ρ , ω , ϕ ...

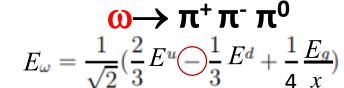
chiral-even GPDs: helicity of parton unchanged

$$\mathbf{H}^{q}(x, \xi, t) \quad \mathbf{E}^{q}(x, \xi, t)$$

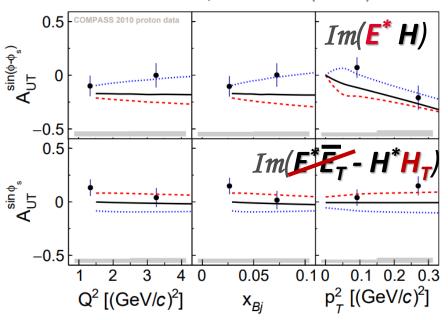

+ chiral-odd or transversity GPDs: helicity of parton changed

$$\mathbf{H}_{\mathbf{T}}^{q}(x, \xi, t)$$
 (as the transversity TMD)

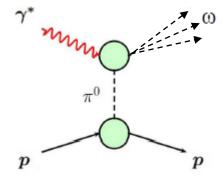

$$\mathbf{E}_{\mathbf{T}}^{q} = \mathbf{2} \ \mathbf{H}_{\mathbf{T}}^{q} + \mathbf{E}_{\mathbf{T}}^{q}$$
 (as the Boer-Mulders TMD)


COMPASS 2010 HEMP with Transversely Polarized Target without RPD

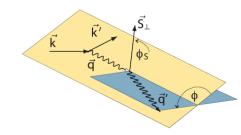
Gparity: $G(\pi)$ =-1; $G(\rho)$ =+1; $G(\omega)$ =-1



COMPASS, NPB 865 (2012) 1-20, PLB731 (2014) 19



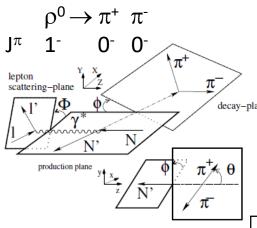
COMPASS, NPB 915 (2017)



 $E^{\rm u}$ and $E^{\rm d}$ of opposite sign ω is more promising (see the larger scale) but there is the inherent pion pole contribution

$$\Gamma(\omega \to \pi^0 \gamma) = 9 \times \Gamma(\rho^0 \to \pi^0 \gamma)$$

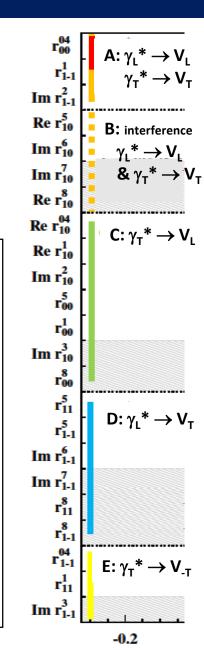
Same for $\pi \omega$ FF but sign unknown



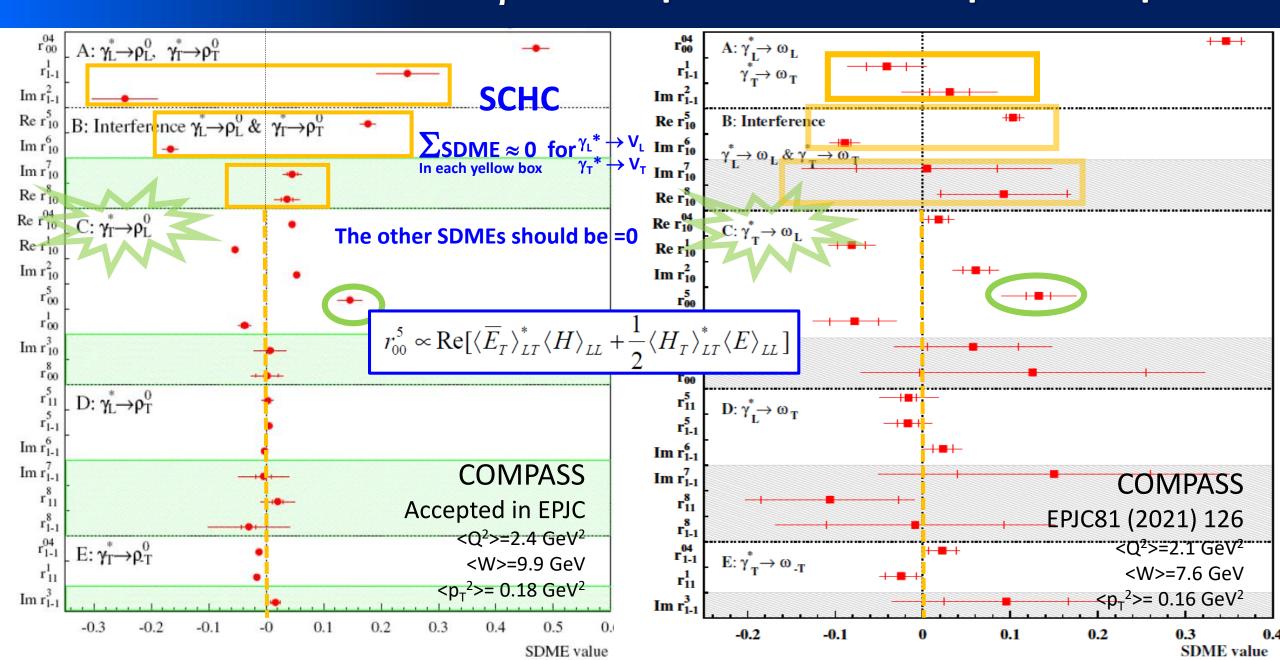
- positive $\pi\omega$ form factor
- no pion pole
- negative $\pi\omega$ form factor

GK EPJC42,50,53,59,65,74

exclusive VM production with Unpolarised Target and SDME

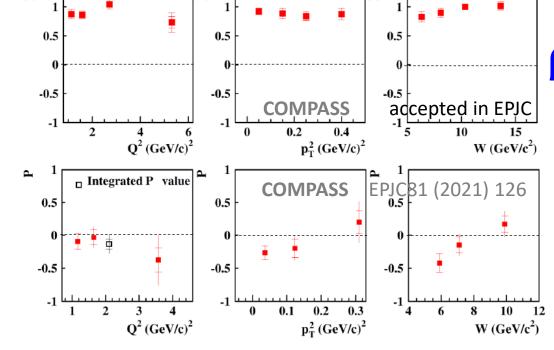

experimental angular distributions:

$$\mathcal{W}^{U+L}(\Phi, \phi, \cos \Theta) = \mathcal{W}^{U}(\Phi, \phi, \cos \Theta) + P_b \mathcal{W}^{L}(\Phi, \phi, \cos \Theta)$$

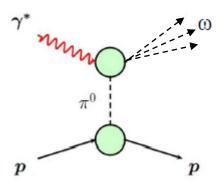

15 'unpolarized' and 8 'polarized' SDMEs

$$\begin{split} \mathcal{W}^{U}(\Phi,\phi,\cos\Theta) &= \frac{3}{8\pi^{2}} \left[\frac{1}{2} (1-r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04}-1)\cos^{2}\Theta - \sqrt{2}\mathrm{Re}\{r_{10}^{04}\}\sin2\Theta\cos\phi - r_{1-1}^{04}\sin^{2}\Theta\cos\phi\phi - r_{1-1}^{04}\sin\phi\phi - r_{1-1}^{$$

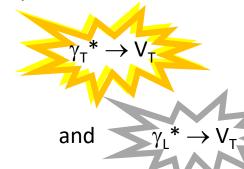
 ϵ close to 1, small \mathcal{W}^{L} no L/T separation


COMPASS 2012 Exclusive ρ^0 and ω production on unpolarized proton

Comparison ω and ρ^0 production


Natural (N) to Unatural (U) Parity Exchange for $\gamma_T^* \to V_T$

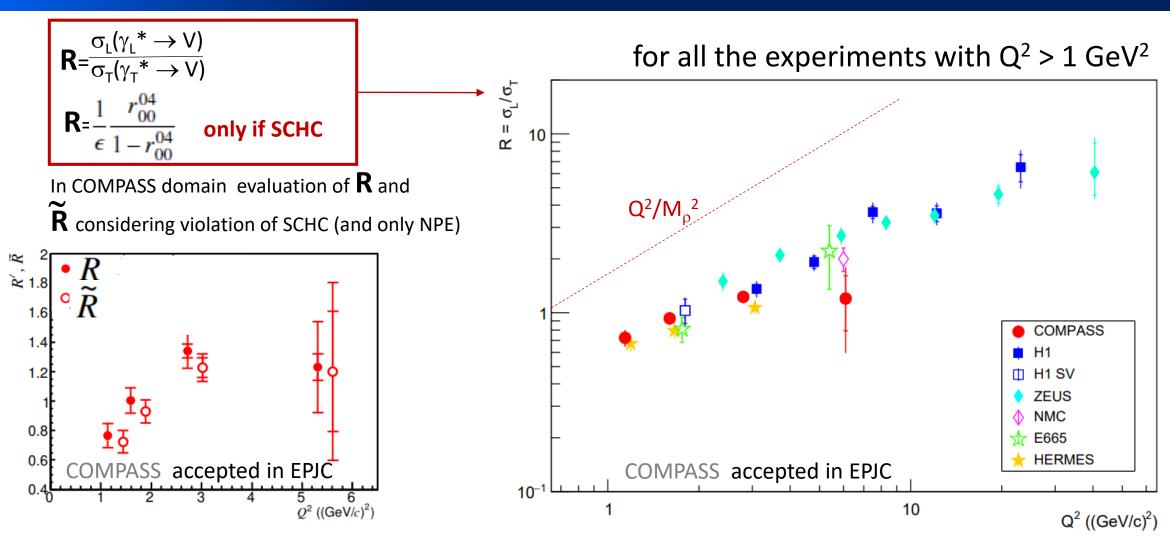
$$P = \frac{2r_{1-1}^{1}}{1 - r_{00}^{04} - 2r_{1-1}^{04}} \approx \frac{d\sigma_{T}^{N}(\gamma_{T}^{*} \to V_{T}) - d\sigma_{T}^{U}(\gamma_{T}^{*} \to V_{T})}{d\sigma_{T}^{N}(\gamma_{T}^{*} \to V_{T}) + d\sigma_{T}^{U}(\gamma_{T}^{*} \to V_{T})}$$



The pion pole exchange (UPE) is large for ω compared to ρ^0

 $\Gamma(\omega \to \pi^0 \gamma) = 9 \times \Gamma(\rho^0 \to \pi^0 \gamma)$ as for π^0 Vector Meson FF

It plays an important role in ω production for:



P~1 \rightarrow NPE dominance P~1 NPE with GPDs H, E

(): P~0 → NPE ~ UPE UPE dominance at small W and p_T^2 **UPE with GPDs** \tilde{H} , \tilde{E} and the dominant pion pole

COMPASS 2012

$R = \sigma_L/\sigma_T$ for exclusive ρ^0 production

Deviation from the pQCD LO prediction in Q²/M_{ρ}²: QCD evolution and q_T Transversize size effects of the meson smaller for σ_L than for σ_T

Next steps for Vector Mesons

Analysis of the exclusive ϕ production is currently in progress

(with cross section and SDMEs)

COMPASS 2016+17

Outlook for DVCS and HEMP

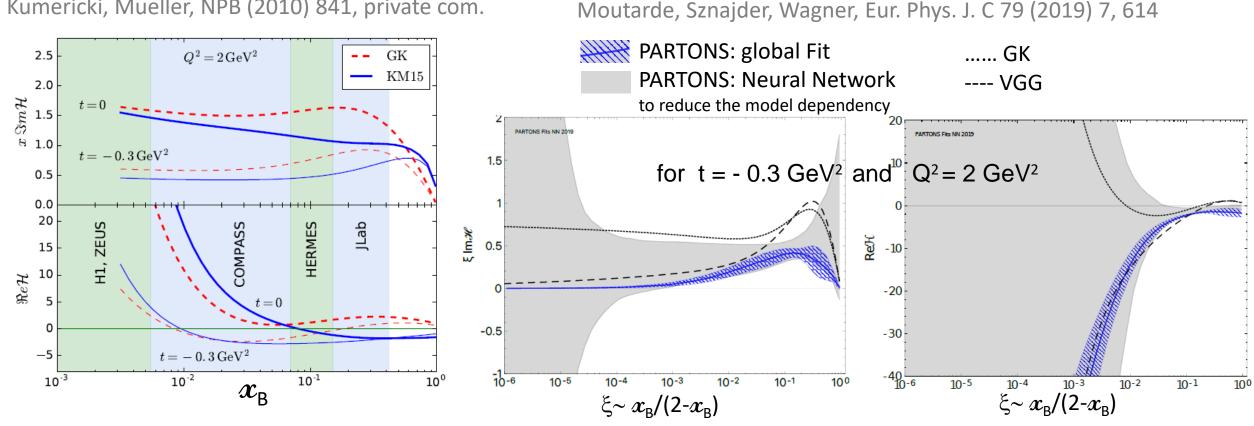
- ✓ **DVCS** and the sum $\Sigma = d\sigma^{+} + d\sigma^{-}$
 - $\rightarrow c_0$ and s_1 and constrain on Im \mathcal{H} and Transverse extension of partons
- ✓ **DVCS** and the difference $\Delta = d\sigma^{+} d\sigma^{-}$
 - \rightarrow c_1 and constrain on $Re\mathcal{H}$ (>0 as H1 or <0 as HERMES)

Importance of e⁺ beam For Jlab 20+ GeV

for D-term and pressure distribution

- \checkmark On-going analysis (Cross section, SDME) for HEMP of π^0 , ρ^0 , ω , ϕ , J/ ψ
 - ✓ Transversity GPDs
 - √ Gluon GPDs
 - ✓ Flavor decomposition

Importance of large luminosity For DVCS, TCS, DDVCS, J/ψ ...


mH and ReH using global fits of the world data

Global Fits using PARTONS framework

Compared to GK and VGG Models

Global Fit KM15 Compared to GK Model GK

Kumericki, Mueller, NPB (2010) 841, private com.

ReH is still poorly known (importance of DVCS with μ^{\pm} at COMPASS, e^{\pm} at JLab or TCS at JLab and EIC)