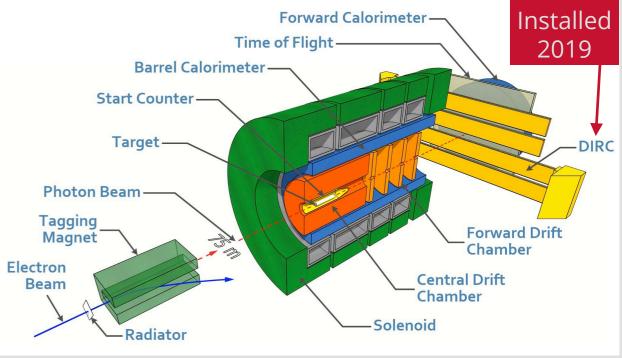
Jefferson Lab

GlueX/Hall D Overview

JLUO Satellite Meeting APS 2023 Spring Meeting



Nathaniel Dene Hoffman — April 16th, 2023 Carnegie Mellon University

Overview

- 1. GlueX-I (2017-2018) and GlueX-II (2020+)
 - J/ψ cross-section near threshold
 - $\rho(770)$ Spin Density Matrix Elements (SDMEs)
 - $\pi_1(1600)$ upper limit
 - Other analyses
- 2. PrimeX- η
- 3. Charged/Neutral Pion Polarizability (CPP/NPP)
- 4. FCAL-II/JEF

J/ψ Cross-Section

Data from 2017-2018 GlueX-I runs

- 4x more statistics than previous paper
- Near-threshold measurement is related to several fundamental properties:
 - Trace anomaly contribution to proton mass
 - J/ψ p scattering length
 - Gravitational form factors of the proton (related to proton mass radius)
- Possible evidence of open-charm exchange in total cross-section
- Important in $P_c^+ \rightarrow J/\psi p$ pentaguark search

Previous Measurement

This Measurement arXiv:2304.03845 (2023)

Differential Cross-Section $\frac{d\sigma/dt}{10} [nb/GeV^2]$ $-\Box$ 10.36 GeV < E_{y} < 11.44 GeV - 9.28 GeV $< E_y < 10.36$ GeV - 8.20 GeV < E_{y} < 9.28 GeV 10^{-2} -t [GeV²] **Total Cross-Section** $J/\psi p$ [nb] 10^{-1} - GLUE Cornell M.-L. Du *et al.* $(q_{max} = 1.0 \text{ GeV})$ M.-L. Du *et al*. $(q_{\text{max}} = 1.2 \text{ GeV})$ 10^{-2} 8.0 E_{v} [GeV]

$\rho(770)$ Spin Density Matrix Elements

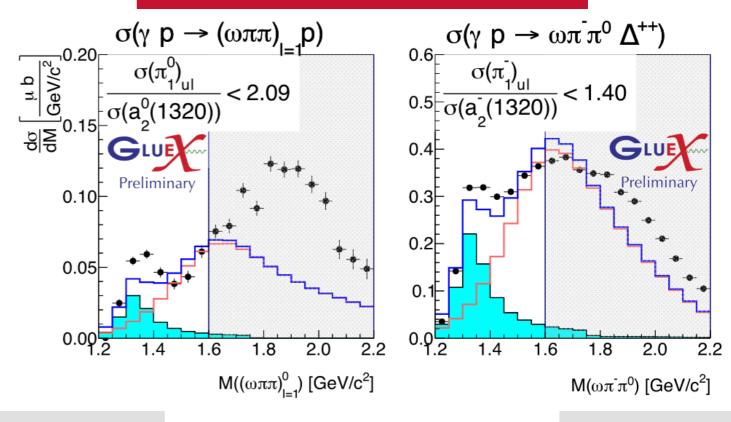
Data from 2017 GlueX-I runs

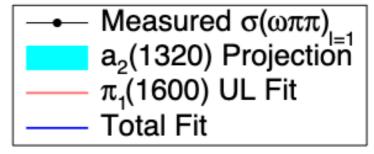
- Input for theoretical description of vector meson production
- Much higher precision than previous measurements
- Demonstration of GlueX's amplitude analysis capabilities
- Paper is under internal review

Measured SDMEs

SCHC + NPE

JPAC Model

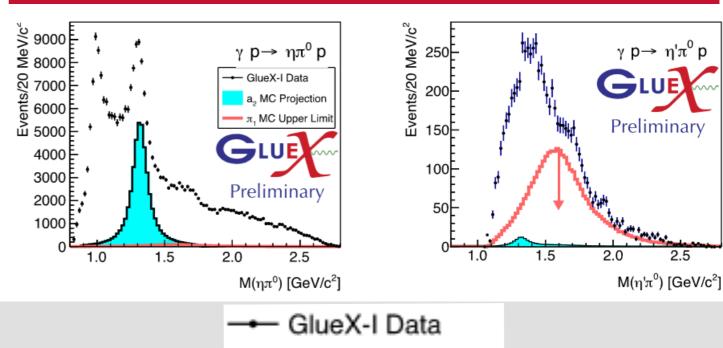

GlueX 2017


$\pi_1(1600)$ Upper Limit

Data from 2017-2018 GlueX-I runs

- The $\pi_1(1600)$ is the lightest predicted spin-exotic hybrid meson ($J^{PC}=1^{-+}$)
- $\pi_1(1600) \rightarrow b_1\pi \rightarrow \omega\pi\pi$ has largest predicted branching fraction from LQCD; use this channel for an upper limit in photoproduction
- Future work in $\eta(')\pi$ channels will seek to confirm COMPASS observation

Fits of GlueX Data to Model



$\pi_1(1600)$ Upper Limit

Data from 2017-2018 GlueX-I runs

- The $\pi_1(1600)$ is the lightest predicted spin-exotic hybrid meson ($J^{PC}=1^{-+}$)
- $\pi_1(1600) \rightarrow b_1\pi \rightarrow \omega\pi\pi$ has largest predicted branching fraction from LQCD; use this channel for an upper limit in photoproduction
- Future work in $\eta(')\pi$ channels will seek to confirm COMPASS observation

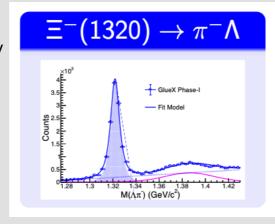
Projections of Upper Limit onto $\eta\pi^0$ and $\eta'\pi^0$

a, MC Projection

π, MC Upper Limit

Other Ongoing Analyses

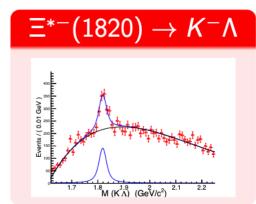
0.30


0.20


0.15

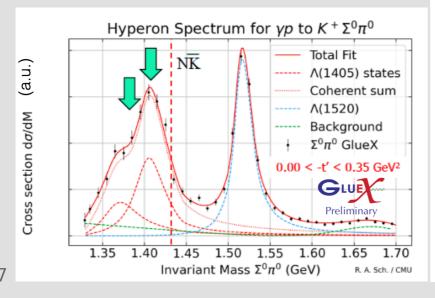
0.05

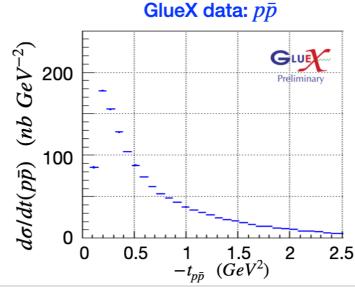
 $\frac{d\sigma}{dt} \left[\frac{\mu b}{GeV^2} \right]$

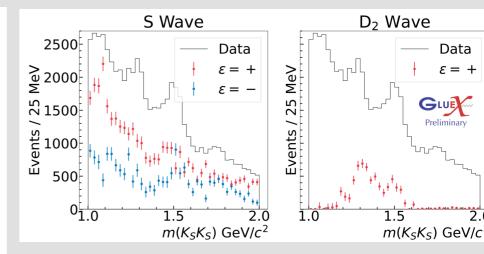

- $a_2(1320)$ cross-section
- Excited **\(\Sigma\)** searches
- $par{p}$ and $\Lambdaar{\Lambda}$ cross-sections and polarization studies
- Modeling $\Lambda(1405)$ decay to $\Sigma^0\pi^0$
- K_SK_S photoproduction (see my talk tomorrow!)
- Many, many more!

GLUE

t GeV²

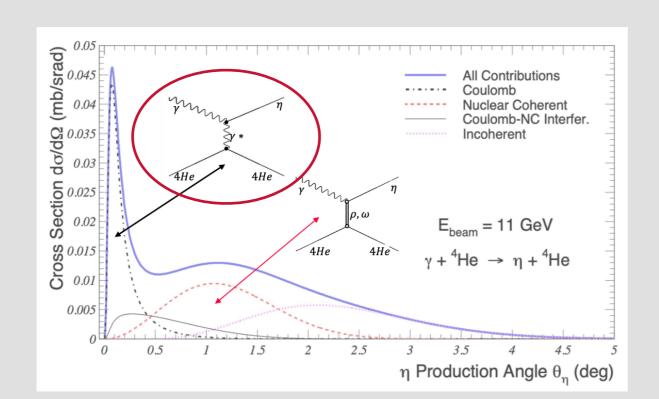


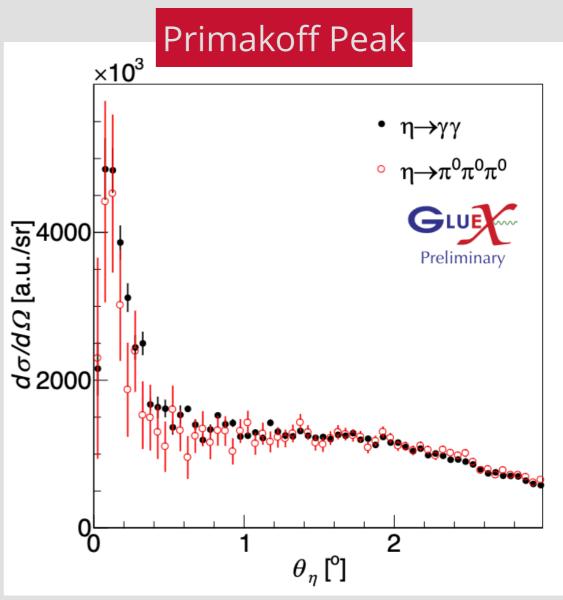

Theory prediction E_{γ} =8.5 GeV GlueX Phase 1

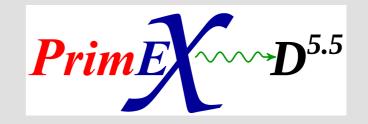

E_v ∈ [8.2,8.8] GeV

Natural exchange Unnatural exchange

Stat. uncertainties

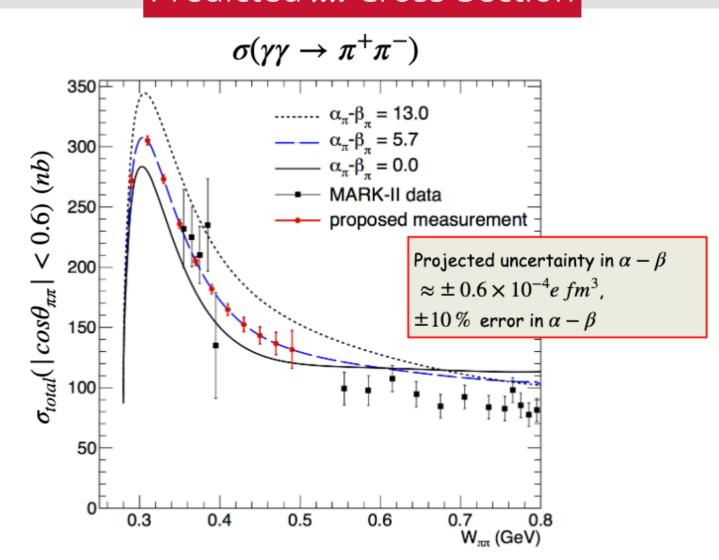





PrimeX- η

Spring 2019, Fall 2021, and Fall 2022

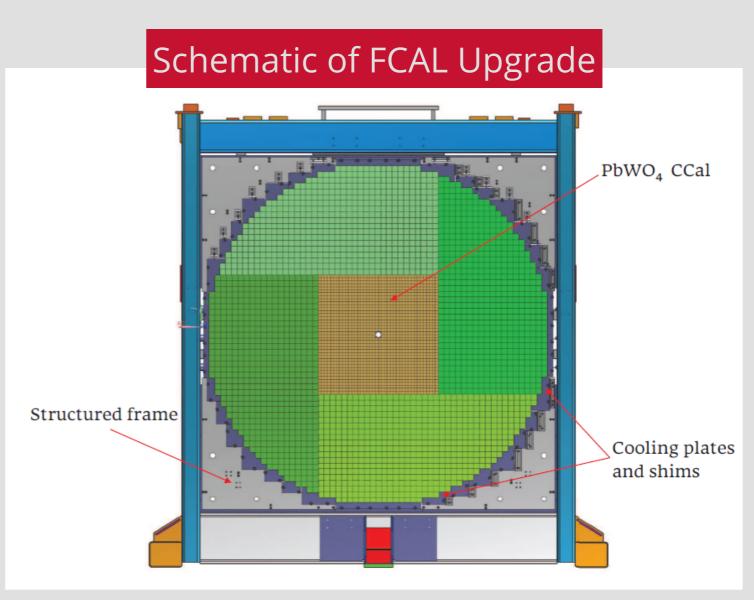
- Precise measurement of $\Gamma_{\eta o \gamma \gamma}$ via the Primakoff effect
 - Mixing angle of $\eta \eta'$ eigenstates
 - Improves measurements of other decay channels like $\Gamma_{\eta \to \pi\pi\pi}$ and light quark mass ratio
- All data has been collected and is under analysis, we expect ~4-6% precision in the final measurement



Charged/Neutral Pion Polarizabilities

Summer 2022

- Precise measurement of charged and neutral pion polarizability
- Hall D measurement utilizes
 Primakoff photoproduction
 - Added forward μ detector
- NPP has no prior measurement
- Data collection in Summer 2022 was a success, analysis is underway!


Predicted $\pi\pi$ Cross-Section

FCAL-II and JEF

Summer 2023+

- Upgrade the Forward Calorimeter (FCAL) for higher granularity/precision with PbWO₄ crystals inserted into center of existing detector
 - Installation started a couple of weeks ago, aiming for operation in July 2024
- Goal: Improved reconstruction of multiphoton final states
- ullet Jefferson Lab η Factory (JEF) experiment will run in parallel to GlueX-II
 - JEF will utilize FCAL-II to produce large $\eta(')$ dataset
 - Goal: Study rare decays of $\eta(')$
 - Dark matter $(\eta(') \to B' \gamma \to \pi^0 \gamma \gamma)$ and others)

Summary

- 1. GlueX-I (2017-2018) and GlueX-II (2020+)
 - J/ψ cross-section near threshold
 - $\rho(770)$ Spin Density Matrix Elements (SDMEs)
 - $\pi_1(1600)$ upper limit
 - Many other analyses underway!
- 2. PrimeX- η
- 3. Charged/Neutral Pion Polarizability (CPP/NPP)
- 4. FCAL-II/JEF

