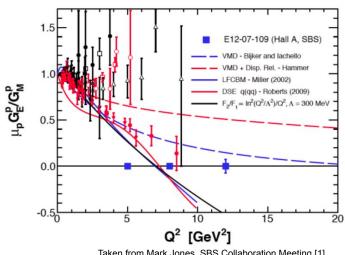
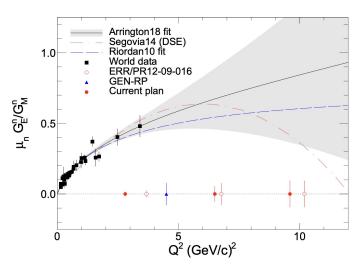
Hall A Update

Sean Jeffas

University of Virginia SBS Collaboration APS Meeting April 16, 2023

Super BigBite Spectrometer (SBS) Program

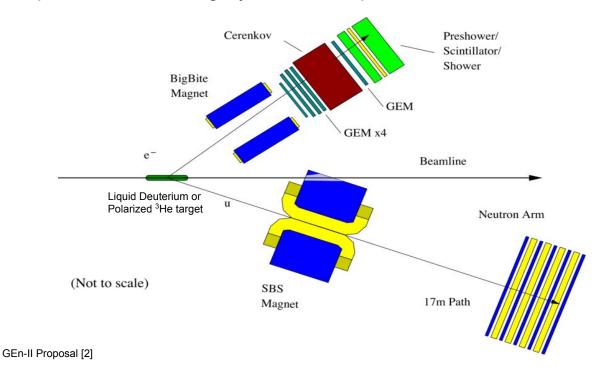

- Precision Measurement of the Neutron Magnetic Form Factor up to $Q^2 = 14.0$ (GeV/c)² by the Ratio Method (GMn).
- Measurement of the Neutron Electromagnetic Form Factor Ratio ${f G_E^n/G_M^n}$ at High Q² (GEn-II).
- Measurement of the Ratio G_E^n/G_M^n by the Double-polarized $^2{\rm H}(\vec{e},e'\vec{n})$ Reaction (GEn-RP).
- Large Acceptance Proton Form Factor Ratio Measurements up to 12 (GeV/c)² Using Recoil Polarization Method (GEp-V).



2 / 10 University of Virginia April 16, 2023

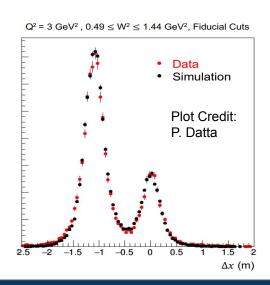
Neutron Electromagnetic Form Factor

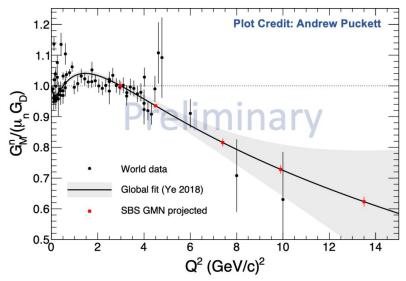
- Previous experiments measured the proton ratio G_E^p/G_M^p up to $Q^2 = 8 \text{ GeV}^2$ and the neutron ratio G_E^n/G_M^n up to $Q^2 = 3.5 \text{ GeV}^2$.
- They found that G_E^p/G_M^p sharply declined after $Q^2 \sim 1 \text{ GeV}^2$.
- It is suspected that G_E^n/G_M^n will exhibit the same behavior at higher Q².



Taken from Mark Jones, SBS Collaboration Meeting [1]

SBS Experimental Setup

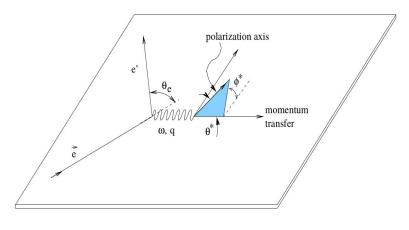

- Only difference between GMn/GEn is the target.
- Next SBS experiments will use slightly different setups.



University of Virginia

GMn Experiment Running

- GMn ran from October 2021 to February 2022.
- Over 2 PB of raw data collected, 5 times more than all previous experiments.
- Virtually all detector systems were new, partly a commissioning run.
 - BBCal HV adjustments, GEM high luminosity limitations, magnetic optics reconstruction.

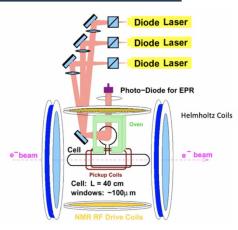

GEn Double Polarization Method

- With a polarized electron beam on a polarized ³He target the elastic scattering cross section can be written as the sum of two parts:
 - o Σ corresponds to the unpolarized cross section.
 - △ corresponds to the polarized cross section.
 - o h is helicity (± 1)

$$\sigma = \Sigma + h\Delta$$

• The spin asymmetry is then:

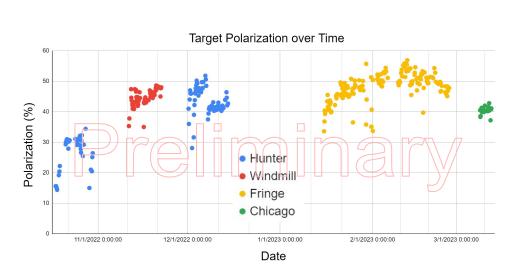
$$A_N=rac{\sigma_+-\sigma_-}{\sigma_++\sigma_-}=rac{\Delta}{\Sigma}$$


$$A_{N} = \frac{-\frac{G_{E}^{n}}{G_{M}^{n}} 2\sqrt{\tau(1+\tau)} \tan(\theta/2) \sin \theta^{*} \cos \phi^{*} - 2\tau \sqrt{1+\tau+(1+\tau)^{2} \tan^{2}(\theta/2)} \tan(\theta/2) \cos \theta^{*}}{\left(\frac{G_{E}^{n}}{G_{M}^{n}}\right)^{2} + (\tau + 2\tau(1+\tau)) \tan^{2}(\theta/2)}$$

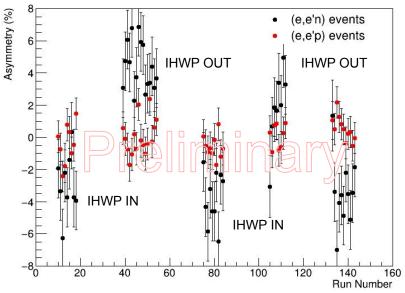
GEn-II Polarized Target

- Only difference between GMn and GEn is the target.
- Polarized target enclosure began installation in March 2022.
- Novel large target cell installed.
 - 60 cm length, 200 W lasers, 10 atm pressure.
- Magnetic field mapping.

7 / 10


GEn-II Running

- GEn-II ran from October 2022 to March 2023.
- Significant accelerator downtime reduced our statistics.
 - Will run for five more weeks in August on $Q^2 = 9.7$.
- Expected 45% polarization.
 - Near or exceeding this goal for most of running.
 - World record for luminosity on 50% polarized target.


	Commissioning	GEn $Q^2 = 2.9$	GEn $Q^2 = 6.6$	GEn $Q^2 = 9.7$
Time Period	10/10/22 - 10/12/22	10/14/22 - 10/30/22	11/10/22 - 12/14/22	1/15/23 - 3/12/23
Fraction of Data Collected	NA	33%	75%	28%
Average Polarization (in beam)	NA	25%	43.7%	47.6%

GEn-II Preliminary Look

- ³He target required optimization.
 - Determining proper heating, convection, laser settings.
- Preliminary asymmetry measurements are in line with expectation.
- Significant analysis ahead.

Asymmetry vs Run Number

9 / 10

Near Future

Date	Activity
Aug 10 – Oct 2 2023	Run 3He GEn and A_LL
Oct 3 2023 – Jan 30 2024	Deinstall polarized 3He target, modify beam line and install cryotarget
Jan 31 – Feb 26 2024	Run GEn-RP and K_LL
Feb 27	Start deinstall GEn-RP and installing GEp

10/ 10 University of Virginia April 16, 2023

References

- [1] SBS Collaboration Meeting, Feb 17 18 2021: https://indico.jlab.org/event/430/contributions/7832/attachments/6493/8711/mkjones_sbs_ecal_feb_2021.pdf
- [2] B. Wojtsekhowski, T. Averett, G. Cates, Jefferson Lab experiment E12-09-016 GEn(2): https://misportal.jlab.org/mis/physics/experiments/viewProposal.cfm?paperId=617

11/ 10 University of Virginia April 16, 2023