CEBAF with Low Frequency Beam

Effect of Low Frequency Beam to Hall D on MOLLER

Summary and action items in green

Accelerator Division

March 27, 2023

Running 4-Halls during Moller and K_L

- Hall A (MOLLER):
 - 0.26 pC @ 249.5 MHz (4 ns, 65 µA average beam current) at 11 GeV
- Hall B:
 - 0.002 pC @ 249.5 MHz (4 ns, 50 nA average beam current)
- Hall C:
 - 0.12 pC @ 249.5 MHz (4 ns, 35 µA average beam current)
- Hall D (K_L):
 - 0.32 pC @ 15.6 MHz (64 ns, 5 µA average beam current)

Issues

- Issues:
 - I. How would the RF system respond to such current variations? Sub-harmonic Beam loading in Buncher and SRF cavities in Linacs?
 - Any changes to beam properties (e.g., energy spread)? Expected to be at 10⁻⁶ level in SRF cavities. Buncher cavities will be modeled and tested with beam
 - II. Injector optimization for parity-quality-beam (transmission and Wien Flip) vs K_L ? Will be studied with beam
 - III. How would the photocathode respond to such current variations?
 - Is there any time dependency in QE or polarization? Will be studied with beam
- Experience: G0 Forward in Hall C (2003 2004)
 ➤ 1.28 pC @ 32 MHz (32 ns, 40 µA), 3rd pass (3.0 GeV)
 ➤ Note that this was the parity-violation experiment

Time Structure in North Linac

• 64 ns pulse interval is 96 RF cycles of 1497 MHz (0.668 ns) cavity frequency

• Beam Bunches:

- MOLLER
- Hall B
- Hall C

First Pass	1
Second Pass	2
Third Pass	3
Fourth Pass	4
Fifth Pass	5
$5\frac{1}{2}$ Pass	6

Region	RF Cycles	MOD(6)	MOD(128)
1L→3L	6554	2	26
3L→5L	6549	3	21
5L→7L	6547	1	19
7L→9L	6546	0	18
9L→BL	6545	1	17

*Showing only first pass for MOLLER and Halls B and C

Time Structure in South Linac

• 64 ns pulse interval is 96 RF cycles of 1497 MHz (0.668 ns) cavity frequency

• Beam Bunches:

- MOLLER
- Hall B
- Hall C

First Pass	1
Second Pass	2
Third Pass	3
Fourth Pass	4
Fifth Pass	5

Region	RF Cycles	MOD(6)	MOD(128)
2L→4L	6551	5	23
4L→6L	6548	2	20
6L→8L	6546	0	18
8L→AL	6546	0	18

*Showing only first pass for MOLLER and Halls B and C

Plan

- Questions to answer:
 - Impacts of delivering K_L beam in accelerator?
 - > Are there conflicts between K_L and MOLLER?

• How to test RF issue?

- Can RF be sufficiently modeled? Yes. Who will do this?
- Beam test in Injector

Photocathode effects require beam testing

- Install new Hall D Fiber Laser Amplifier with RF
- Hall D at 15.6 MHz to inline dump
- Beam test in Injector

Conclusion – we need to perform beam studies:

- CIS/RF to generate \mathbf{K}_{L} beam
- INJ setup to in-line dump
- MOLLER/Injector/CIS to characterize beam properties

