Tagged DIS Measurement with LAD

Florian Hauenstein for the LAD experiment, Joint HallA/C Summer Meeting 06/30/23

EMC and SRC Correlation

Probe EMC-SRC Correlation with Tagged DIS Measurements

• EMC-SRC: Large modification for SRC nucleons

 Determine modification with DIS scattering on nucleons with high momentum

- "Tag" SRC nucleon not part of the DIS interaction to select initial state
- --> New observable
- \longrightarrow Modification dependence on α
 - strong —> SRCs
 - weak —> MF

Simplest Case: Tagged DIS with Deuterium

Tagging Kinematics 101

$$Q^2 = -q^2 = |\overrightarrow{q}|^2 - \omega^2$$

Standing nucleon
$$P_0 = (m_n, 0)$$

$$W)^{2} = (P_{0} + q)^{2}$$
$$x = \frac{Q^{2}}{2m_{n}\omega}$$

Tagging Kinematics 101

Measure Tagged Ratio

$$R_{tag} = \frac{\sigma_{tag}^{exp} \left(Q^2, p_T, \alpha_S, x'\right) / \sigma_{tag}^{exp} \left(Q_0^2, p_T, \alpha_S, x' = x_0\right)}{\sigma_{tag}^{theory} \left(Q^2, p_T, \alpha_S, x'\right) / \sigma_{tag}^{theory} \left(Q_0^2, p_T, \alpha_S, x' = x_0\right)}$$

$$\approx \frac{\text{bound nucleon } F_2^*}{\text{free nucleon } F_2}$$

Theory assumptions:

- Plane Wave Impuls Approximation
 - Factorization
 - no spectator rescattering (final state interaction)

Tagged Experiments at JLab

Hall B: CLAS 12 + Backward Angle Neutron Detector (BAND)

- Run Group B
- Analysis under review

Tagged Experiments at JLab

Hall B: CLAS 12 + Backward Angle Neutron Detector (BAND) Hall C: SHMS/HMS + Large Angle Detector (LAD)

- Run Group B
- Analysis under review

- Experiment ready
- Run in 2024!

Tagged Experiments at JLab

d(e,e'N)X - Expected Results

Melnitchouk, Sargsian, Strikman, Z.Phys. A359, 99 (1997)

d(e,e'N)X - Expected Results

Melnitchouk, Sargsian, Strikman, Z.Phys. A359, 99 (1997)

Tagged Predictions for BAND with different models

Segarra et al, Phys. Rev. Research 3, 023240 (2021)

Predictions from convolution model fits to data up to A=3

BAND in HallB

E.P. Segarra et al., NIM A978 (2020), 164356

Preliminary Tagged Ratio from BAND

Strong modification observed! Positive slope implies opposite effect for LAD!

The LAD Experiment (E12-11-107)

- Approved for 40 PAC days
- Beam energy 11 GeV and 6.6 GeV (calibration)
- Beam currents ~ 0.5-2uA
- Standard HMS for electrons
 - Momentum: 4.4 GeV
 - Angles: 13.5°, 17° and 21.7° (calibration)
- Standard SHMS for electrons
 - Momentum: 4.4 GeV and 5.1 GeV (calibration)
 - Angles: 13.5° and 17°
- LAD detector for recoil protons
- PRAD GEMs for tracking
- Passed ERR in 2020

LAD

Kinematic Coverage

Rotated Scattering Chamber

Target

- Modified HAPPEX cell to accommodate LAD acceptance
 - 20 cm length
 - 2 cm width
 - 2 cm height
- Fabrication by JLab target group

LAD Detector

- CLAS TOF scintillators refurbished at ODU
 - install/purchase ~50 new 3-inch PMTS
 - stored in ESB
 - stands designed and ready for fabrication
- Laser calibration system
 - tested system from BAND (HallB)
 - fibers need to be installed
- DAQ/electronics in SHMS hut (110 channels)
 - 7 FADCs
 - 1 TDC
 - HV

LAD Position

- 5-6 m away from target
- In-plane coverage 90° 157°
- Out-of-plane coverage +/-17°
- SHMS cable tray needs modification
 - plan developed
 - ~1 week work (3 people)

GEMs

- Two refurbished 120 x 55 cm² PRAD GEMS
- Next to target chamber (<1m away from target)
- Readout:
 - MPD readout
 - experience from SBS
- Support stand in fabrication

(courtesy Holly)

Preparation Timeline

Summary

- Tagged DIS measurements on deuterium to probe EMC-SRC correlation
- Strong modification for high-momentum protons observed with CLAS12+BAND
- LAD experiment to measure modification of high-momentum neutrons
- Preparations are in progress
 - All components expected to be ready by next summer
 - No showstoppers for individual components
- Plans for preparation, installation and beam time exists in detail

We are excited to run LAD next year!

Thank you for your attention

Axel Schmidt (Faculty)

Tyler Kutz

Holly Szumila-Vance (Staff)

+ New ODU Postdoc New graduate student

Sara Ratliff (Grad student)

Dien Nguyen (Faculty)

plus: Douglas Higinbotham, Eli Piasetzky, Larry Weinstein

Backup slides

GEM Commissioning

PRAD GEMs in test lab

Test lab emptied in April-May, ready for PRAD GEM testing

(courtesy Holly)

Minimize Final-State-Interaction in Tagged DIS

Minimize Final-State-Interaction in Tagged DIS

Previous Results $d(e, e'p_s)X$

$$\frac{F_2^{n^*}(x'=0.55, Q^2=2.8)}{F_2^{n^*}(x'=0.25, Q^2=1.8)}$$
$$\frac{F_2^n(x=0.55, Q^2=2.8)}{F_2^n(x=0.55, Q^2=2.8)}$$

 $F_2^n(x = 0.25, Q^2 = 1.8)$

Non ideal kinematics

- Not so high in Q^2
- Low α_S has $\theta_{nq} \sim 90 \deg$
- $p_T = [0.25 0.35]$ [GeV/c]

A. V. Klimenko et al. Phys. Rev. C 73, 035212 (2006)

Impact on EMC studies with light nuclei

- Convolution model Segarra et al, Phys. Rev. Research 3 (2021)
- Allow isospin-dependent *n*, *p* modification
- Fit light nuclear structure functions with tagged double ratio as constraint

Preparation and Installation Plans Ready

GEM Timetable

- General 1-year timeline achievable
- To be done ASAP for GEMs (this summer):
 - Install aluminized mylar
 - Produce faraday cage shielding
 - Flow nitrogen through detectors

(courtesy Holly)

EMC Effect in Deuterium

- EMC is small BUT
- SRC hypothesis predicts large modification of (rare) SRC states!

Estimated Counts and Reach

