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What have we learned about SRCs?

K. Sh. Egiyan et al. Phys.Rev.C 68, 014313 (2003)

K. S. Egiyan et al.Phys.Rev.Lett.96, 082501 (2006)

‣ (e,e’): scaling 
above   MeV/c all nuclei have similar 
nucleon momentum distributions (i.e., scaling)

kF ∼ 250

A=2 A > 2

 
Ryckebusch et al.PLB79221 (2019) 

Schmookler et al. Nature, 566, 354 (2019)

N. Fomin et al. Phys.Rev.Lett.108, 092502  (2012)
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L.L. Frankfurt, M.I. Strikman, D.B. Day, and M.M. 
Sargsyan,  Phys. Rev. C 48, 2451 (1993) 

‣ (e,e’p): np-dominance
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Subedi et al. Science 320, 1476 (2008)

almost all high-momentum nucleons (  MeV/c )  
belong to np-SRC pairs (“np-dominance”)

kF > 250

E. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman, 
and J. W. Watson Phys. Rev. Lett. 97, 162504 (2006)

2

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.68.014313
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.96.082501
https://doi.org/10.1016/j.physletb.2019.03.016
https://doi.org/10.1038/s41586-019-0925-9
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.092502
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.48.2451
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.48.2451
https://doi.org/10.1126/science.1156675
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.162504
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.97.162504
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Motivation
‣ (e,e’):

D. Nguyen et al. PRC 102, 064004 (2020)

inclusive (e,e’) 
per-nucleus

tells us abundances, but cannot distinguish pp, nn, np 
—> need (e, e’p) for different A and N/Z

1.17

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.102.064004
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Motivation

SRC pairs: 

•  account for almost all high-p  
(>250 MeV/c) nucleons in nuclei 

•  are predominantly np, even  
 in neutron-rich nuclei

Target Z (protons) N (neutrons)

C12 6 6

Al27 13 14

Fe56 26 30

Pb208 82 126

M. Duer et al. (CLAS collaboration), Nature 560, 617 (2018)

‣ (e,e’N):
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Motivation

Target Z (protons) N (neutrons)
Be9 4 5
B10 5 5
B11 5 6
C12 6 6
Al27 13 14
Ca40 20 20
Ca48 20 28
Fe54 26 28
Fe56 26 30

Au197 79 118
Pb208 82 126

CaFe will answer:  

• Which nucleons form pairs? 

•  How does adding neutrons  
speed up protons? 

•  How does NN-SRC pairing  
change with A  and  N/Z?

Projected CaFe Results

     40Ca

10B, 12C

54Fe

9Be
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Neutron excess, N/Z 

11B

M. Duer et al. (CLAS collaboration), Nature 560, 617 (2018)

48Ca
197Au

‣ (e,e’p):

NEW data taken  
Spring 2023 !
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CaFe Experiment Setup

θe

electron 
detector

hadron 
detector

θpq

•  e- scattering off low-momentum  
(mean-field or MF) nucleon with internal 
momenta,   < 250 MeV/c
⃗pi

⃗pi

⃗pA−1
r = − ⃗pi

⃗pf

“mean-field nucleon”
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θe

electron 
detector

hadron 
detector

θpqθrq

⃗pi

⃗pr

− ⃗pA−2
i,c.m.

•  e- scattering off high-momentum (SRC) 
bound nucleon with internal momenta,   

 > 250 MeV/c  

• reconstructed (undetected) recoil nucleon 
momenta, 


⃗pi

⃗pr = ⃗q − ⃗pf

⃗pf

⃗q

CaFe Experiment Setup

“High-momentum 
short-range correlated (SRC) 


nucleon”
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θe

electron 
detector

hadron 
detector

θpqθrq

⃗pi

⃗pr ∼ − ⃗pi

− ⃗pA−2
i,c.m.

•  e- scattering off high-momentum (SRC)  
bound nucleon with internal momenta,   

 > 250 MeV/c 

• reconstructed (undetected) recoil nucleon 
momenta, 

⃗pi

⃗pr = ⃗q − ⃗pf

⃗pf

⃗q

• plane-wave impulse approximation 
(PWIA) 

‣ no further re-interaction between 
knocked-out and recoil nucleon 

‣ recoil momentum unchanged, 
 

‣  can be used to access internal  
nucleon momentum distributions  

⃗pr ∼ − ⃗pi

⃗pr

CaFe Experiment Setup
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θe

electron 
detector

hadron 
detector

θpqθrq

⃗pi

⃗pr ≠ − ⃗pi

− ⃗pA−2
i,c.m.

•  e- scattering off high-momentum (SRC)  
bound nucleon with internal momenta,   

 > 250 MeV/c 

• reconstructed (undetected) recoil nucleon 
momenta, 

⃗pi

⃗pr = ⃗q − ⃗pf

⃗pf

• Final-state interactions (FSI):


‣ recoil nucleon re-interacts with  
knocked-out nucleon 

‣ recoil momentum modified, 
 

‣  cannot be used to access internal 
nucleon momentum distributions 

⃗pr ≠ − ⃗pi

⃗pr ⃗q

CaFe Experiment Setup



CaFe (online) statistics collected

Ca48

(114%)

C12

(101.2 %)

Be9

(116 %)

Fe54

(71.14 %)

Ca40 
(94.8 %)

B11

(97.3 %)

B10

(105.5 %)

Au197

(88 %)

A(e, e’p) Counts (@ SRC kinematics)
Sep 2022 Feb 2023

target



11

CaFe Analysis Status
Study Status Leading Effort

BCM calibration COMPLETE C. Yero

    ref. times / time windows / 
    detector calibrations

COMPLETE C. Yero / N. Swan

SHMS optics COMPLETE H. Szumila-Vance

proton absorption IN-PROGRESS N. Swan

cuts sensitivity studies  
       (analysis cuts systematics)

IN-PROGRESS C. Yero

        data-to-simulations 
        h(e,e’p), c(e,e’p) checks

IN-PROGRESS C. Yero / D. Nguyen / N. Swan

other sources of systematics 
(BCM, live time, efficiencies, 

kinematics, etc.)

PENDING D. Nguyen

target boiling PENDING  N. Swan / D. Nguyen
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Data Quality Checks

Data Quality Checks performed by Noah Swan (Hall C CaFe graduate student)

Be9
B10
B11
C12
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Data Quality Checks

Data Quality Checks performed by Noah Swan (Hall C CaFe graduate student)
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Data Analysis Challenges
Invariant Mass (Ca48, mean-field)

contaminated
de-contaminated

Hydrogen peak 
(Mp = 0.938 GeV)

Hypothesis:

- pure mineral oil (C + H) at surface of Ca-48 “washed off”on its own  
- high beam current helped with decontamination process

• Ca48 oil contamination 

• rate-dependence 

• double coin. time peak 

• H(e, e’p) optics optimization 

• data-to-simulation 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Charge-normalized T2 Scaler Counts Relative to 1st SRC Run

Ca48 Uncorrected

fit: Ae°ÆQ + C
A = 3.090E-02 ± 1.331E-03
Æ = 6.422E-04 ± 7.258E-05
C = 9.728E-01 ± 9.806E-04

Ca48 Corrected to 55 uA

Ca48 Corrected to 55 uA
(only last 3 runs)

MF runs
MF runs

~ 3 % decrease

T2 scalers: SHMS EL-REAL singles pre-trigger

Ca48 (SRC) 
high-pmiss
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Measurements:

- ~3 % absolute drop (3.1 to 0.65 %) in H-scaled Carbon contamination @ MF kin

- ~3 % relative drop in charge-normalized T2 (e- singles) scalers  @ SRC kin
independent measurements of absolute and  relative contamination consistent !

** still need further verification from chemical analysis (D. Meekins, in-progress)

Data Analysis ChallengesData Analysis Challenges

• Ca48 oil contamination 

• rate-dependence 

• double coin. time peak 

• H(e, e’p) optics optimization 

• data-to-simulation 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observation: charge-normalized  data yield  
                      depends on trigger rate (current) 
                      for all nuclei measured 

heavy nuclei

light nuclei

data yield

Yield has been normalized  
to the lowest current  
data-point  (relative Yield)

Yield has been normalized  
to the lowest current  
data-point (relative Yield)

data yield

T2 (e-) scalers

T2 (e-) scalers

Data Analysis Challenges

• Ca48 oil contamination 

• rate-dependence 

• double coin. time peak 

• H(e, e’p) optics optimization 

• data-to-simulation 



17

accidentals T2 
that block the 
coincidence

after_cut
before_cut

T2 (or aT3) TDC time

CUT OUT 
accidentals

problem: no trigger timing cuts made on T2 (and T3) 
triggers -> wrong (accidental) trigger used to form the 
coincidence lead to good coincidence signals blocked and 
drop of yield

Ca40 mean-field

before_cut

Data Analysis Challenges

• Ca48 oil contamination 

• rate-dependence 

• double coin. time peak 

• H(e, e’p) optics optimization 

• data-to-simulation 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 coincidence made 
with wrong T2 (or T3) TDC hit

before_cut
after_cut
(T2 - T3) Coin. TDC time (corrected for path length)

solution: apply timing cut to triggers (T2, T3) that form the 
coincidence signal -> use the correct trigger time to recover 
coincidences (and yield)

Ca40 mean-field

before_cut
after_cut

Data Analysis Challenges

• Ca48 oil contamination 

• rate-dependence 

• double coin. time peak 

• H(e, e’p) optics optimization 

• data-to-simulation 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raw_ctime_run16977
Entries  290644
Mean      414
Std Dev     70.49
Integral  2.906e+05

200− 0 200 400 600 800 1000 1200
Channels

1

10

210

310

410

raw_ctime_run16977
Entries  290644
Mean      414
Std Dev     70.49
Integral  2.906e+05

(T.coin.pTRIG2_ROC2_tdcTimeRaw-T.coin.pTRIG3_ROC2_tdcTimeRaw) {T.coin.pEDTM_tdcTimeRaw==0&&g.evtyp>=4}

raw_ctime_run17098
Entries  110067
Mean    311.9
Std Dev     49.14
Integral  1.101e+05

raw_ctime_run17098
Entries  110067
Mean    311.9
Std Dev     49.14
Integral  1.101e+05

C12 (~30 uA)

C12 (~60 uA)

raw_edtm_run16977
Entries  35881
Mean    482.6
Std Dev     32.96
Integral  3.588e+04

200− 0 200 400 600 800 1000 1200

1
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410

raw_edtm_run16977
Entries  35881
Mean    482.6
Std Dev     32.96
Integral  3.588e+04

(T.coin.pTRIG2_ROC2_tdcTimeRaw-T.coin.pTRIG3_ROC2_tdcTimeRaw) {T.coin.pEDTM_tdcTimeRaw>0&&g.evtyp>=4}

raw_edtm_run17098
Entries  6366
Mean    396.1
Std Dev     40.13
Integral    6366

raw_edtm_run17098
Entries  6366
Mean    396.1
Std Dev     40.13
Integral    6366

30 ns

0.1 ns/Ch

2nd peak

(Sep 19)

(Sep 27)

30 ns

2nd EDTM  
“missing”

0.1 ns/Ch

Channels

Channels

problem:  
• hardware trigger component offset +30 ns coincidence


- part of good coincidence trigger offset

- corresponding EDTM signal also offset (and missing)

Data Analysis Challenges

• Ca48 oil contamination 

• rate-dependence 

• double coin. time peak 

• H(e, e’p) optics optimization 

• data-to-simulation 

solution:  
• “missing EDTM” signal  leads to lower DAQ live time 

and this also accounts for the lost (2nd peak) 
coincidence signals when correcting for the live time
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Missing Energy Invariant Mass

post-optimization (data)
pre-optimization (data)

Missing Momentum x-Bjorken

H(e, e’p) kinematics (after optimization+centroid alignment)

Thanks to Holly Szumila-Vance for H(e, e’p) angle/delta optimization 
( See references: [1] , [2] )

Data Analysis Challenges

• Ca48 oil contamination 

• rate-dependence 

• double coin. time peak 

• H(e, e’p) optics optimization 

• data-to-simulation 

https://hallcweb.jlab.org/doc-private/ShowDocument?docid=1198
https://hallcweb.jlab.org/doc-private/ShowDocument?docid=1205
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6.8 deg (singles) 7.495 deg (singles)

8.295 deg (singles) 8.3 deg (coin)

DATA W dependence on x’tar (relative out-of-plane) could distort location of W peak 
in each of the singles elastics runs (largest effect @ 6.8 deg) 

Invariant Mass W vs. SHMS x’tar (DATA)

Data Analysis Challenges

• Ca48 oil contamination 

• rate-dependence 

• double coin. time peak 

• H(e, e’p) optics optimization 

• data-to-simulation 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6.8 deg (singles) 7.495 deg (singles)

8.295 deg (singles) 8.3 deg (coin)

Invariant Mass W vs. SHMS x’tar (SIMC)

NO SIMC W dependence on x’tar (relative out-of-plane) as expected, but 
since DATA has dependence, can affect centroid alignment of W

Data Analysis Challenges

• Ca48 oil contamination 

• rate-dependence 

• double coin. time peak 

• H(e, e’p) optics optimization 

• data-to-simulation 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Invariant Mass W (after optimization+centroid alignment)

•  ~1-2 MeV data/simc mis-alignment 

•   difficulty fitting higher order matrix elements to reduce x’tar dependence 
  ( may be best optimized matrix that can be done ?! )

Δ ∼ 2 MeV Δ ∼ 1.9 MeV

Δ ∼ 0.6 MeV Δ ∼ − 0.05 MeV

SIMC
DATA

SHMS @  
6.8 deg

SHMS @  
7.495 deg

SHMS @  
8.295 deg

(e,e’)
SHMS @  
8.3 deg

(e,e’p)

(e,e’) (e,e’)

Data Analysis Challenges

• Ca48 oil contamination 

• rate-dependence 

• double coin. time peak 

• H(e, e’p) optics optimization 

• data-to-simulation 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Invariant Mass

Missing Momentum x-Bjorken

H(e, e’p) Data / SIMC Yields

DATA
SIMC

Missing Energy

• Measured DATA/SIMC ~ 92 %  
(where are remaining counts?) 

- HMS proton absorption expected ~ 5%

Y =
N(e,e′￼p)

Q ⋅ ϵhtrk ⋅ ϵetrk ⋅ ϵmult.trk ⋅ ϵLT ⋅ TN ⋅ σthick

NOT corrected for:

- radiative_effects

- energy_loss

- proton_abs

Data Analysis Challenges

• Ca48 oil contamination 

• rate-dependence 

• double coin. time peak 

• H(e, e’p) optics optimization 

• data-to-simulation 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Invariant Mass

Missing Momentum x-Bjorken

C(e, e’p) Data / SIMC Yields

DATA
SIMC

Missing Energy

radiative_effects
energy_loss

NOT corrected for:

proton_abs

• Measured DATA/SIMC ~ 83%,  
(where are remaining counts ?) 

- HMS proton absorption expected ~ < 5% 

- Loss of C12 spectral strength due to SRC ? 
(Hall C CT exp. Estimated ~11%)

Y =
N(e,e′￼p)

Q ⋅ ϵhtrk ⋅ ϵetrk ⋅ ϵmult.trk ⋅ ϵLT ⋅ TN ⋅ σthick ⋅ Z /A

DATA
SIMC NOT corrected for:


- radiative_effects

- energy_loss

- proton_abs

- spectral_strength_loss

Data Analysis Challenges

• Ca48 oil contamination 

• rate-dependence 

• double coin. time peak 

• H(e, e’p) optics optimization 

• data-to-simulation 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Single Ratio Checks (per proton)

R =
YA

YC12 MF

YA ≡
NA(e,e′￼p)

Q ⋅ ϵhtrk ⋅ ϵetrk ⋅ ϵmult.trk ⋅ ϵLT ⋅ TN ⋅ σthick ⋅ Z/A
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Q2 Dependence Study

Study done by Dr. Dien Nguyen
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Missing Energy Dependence Study

Study done by Dien Nguyen
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MF Single Ratio Data/SIMC 

Fe56

• DATA + SIMC exhibit similar trend

- spectral strength loss due to limited  

(Emiss, Pmiss) acceptance ?

Au197

“Scattering off  
low-momentum  
proton should NOT  
depend on A”
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High-Momentum (SRC) 
Single Ratio (per proton)

R =
YCa48

YCa40 SRC

YA ≡
NA(e,e′￼p)

Q ⋅ ϵhtrk ⋅ ϵetrk ⋅ ϵmult.trk ⋅ ϵLT ⋅ TN ⋅ σthick ⋅ Z/A



SRC Ca-48 / 40 Single Ratio  (per proton)

Ve
ry 
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(e,e’p) Ca-48 / 40



D. Nguyen et al. PRC 102, 064004 (2020)

1.17(e,e’) Ca-48 / 40

k>250 MeV/c

(per-nucleus)

+ 8 neutrons

Ve
ry 

Prel
im

ina
ry
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(e,e’p) Ca-48 / 40

(per-nucleus)

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.102.064004
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Summary

- great data collected  

- need to finalize analysis 

- data/simulation 

- proton absorption

- systematic uncertainties


- unexpected and interesting Ca-48/40  
results imply importance of nuclear structure


- expect final results this fall !



Acknowledgements

"This material is based upon work supported by the  
  National Science Foundation under Grant No. 2137604"

ThanksThanks !

34



Meson-Exchange Currents (MEC) Delta, N* Resonance Excitations (IC)
suppressed at  xBj > 1suppressed at  Q2 > 1(GeV/c)2

suppressed at specific  degθnq < 40

pm
pm

Plane Wave Impulse Approximation  (PWIA)

deuteron

deuteron deuteron

Final State Interactions (FSI)

pm

deuteron FSI

virtual photon - nucleus interactions

35
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Event Selection (MF)

| tcoin | ≤ 2.5 ns
Accidental peaks are selected and 
used for subtraction (not shown)

(For illustration purposes, Ca48 MF run 17096 is used)
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Event Selection (MF)

• SHMS acceptance  
determined (OR SET) by HMS 
(angular cut will not do much, 
but is still applied)
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Event Selection (MF)
Momentum Acceptance Definition|δHMS | ≤ 10 %

−10 % ≤ δSHMS ≤ 22 %

δ ≡
P − P0

P0
P0 : Spectrometer central momentum

P : Particle track momentum
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Event Selection (MF)
1 e- peak

2 e-’s peak

3 e-’s peak

• multiple peaks  
constitue (~4-5%)

• n peak: n times the energy 
deposited  (n valid electrons) 

n=1,2,3
• Account for  multi-peak events: 

(multi-track efficiency) 

<latexit sha1_base64="l5acGOxgeqDy8iUYUWbr85C+9lw="></latexit>

✏multi.trk =

P
n=2,3 Edep/P0P
n=1 Edep/P0

• Particle Identification: 
select electrons in SHMS

0.8 ≤ Edep /Ptrack ≤ 1.3
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Event Selection (MF)

• Kinematic Cut to 
Suppress Meson-Exchange 
Currents (MEC)

Q2 ≥ 1.8 GeV2
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Event Selection (MF)

• Kinematic Cut to 
suppress radiative tail/ 
select (e, e’p) events

<latexit sha1_base64="l5q+sjmbu9Kp/+tcqyZk7gRCam4=">AAACBHicbVDLSgMxFM3UV62vUZfdBIvgxjIjRd0IRRFcVugL2mHIpJk2NMkMSUYowyzc+CtuXCji1o9w59+YtrPQ1gOXezjnXpJ7gphRpR3n2yqsrK6tbxQ3S1vbO7t79v5BW0WJxKSFIxbJboAUYVSQlqaakW4sCeIBI51gfDP1Ow9EKhqJpp7ExONoKGhIMdJG8u3yrZ/yDF7BvkjgKWz6aZzNu8x8u+JUnRngMnFzUgE5Gr791R9EOOFEaMyQUj3XibWXIqkpZiQr9RNFYoTHaEh6hgrEifLS2REZPDbKAIaRNCU0nKm/N1LElZrwwExypEdq0ZuK/3m9RIeXXkpFnGgi8PyhMGFQR3CaCBxQSbBmE0MQltT8FeIRkghrk1vJhOAunrxM2mdV97xau69V6td5HEVQBkfgBLjgAtTBHWiAFsDgETyDV/BmPVkv1rv1MR8tWPnOIfgD6/MHRUSWmQ==</latexit>

Em = ⌫ � Tp � Tr

−20 MeV ≤ Em ≤ 90 MeV
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Event Selection (MF)

• Kinematic Cut to 
select mean-field (MF)  
nucleons

Pm ≤ 270 MeV/c
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Event Selection (SRC)

• Kinematic Cut to Suppress 
Meson-Exchange Currents (MEC)

** coincidence time + acceptance  + PID cuts are same as (MF) kinematics

(For illustration purposes, Ca48 SRC run 17057 is used)

Q2 ≥ 1.8 GeV2
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Event Selection (SRC)

• Kinematic Cut to  
suppress inelastic + DIS 
events at x<1  
 
(i.e., suppress  
excitations)

Δ, N*

xBj ≥ 1.2
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Event Selection (SRC)

• Kinematic Cut to  
suppress re-scattering of 
recoil SRC nucleon  
 
(i.e.,  suppress final-state 
interactions) 

θrq ≤ 40∘

Angle between recoil system  
and virtual photon directionθrq :
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Event Selection (SRC)

• Kinematic Cut to 
select short-range 
correlated nucleon 

350 ≤ Pm ≤ 700 MeV/c
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Yield Extraction

Y =
N(e,e′￼p)

Q ⋅ ϵhtrk ⋅ ϵetrk ⋅ ϵmult.trk ⋅ ϵLT ⋅ TN ⋅ σthick
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Yield Extraction

Y =
N(e,e′￼p)

Q ⋅ ϵhtrk ⋅ ϵetrk ⋅ ϵmult.trk ⋅ ϵLT ⋅ TN ⋅ σthick
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Yield Extraction

Y =
N(e,e′￼p)

Q ⋅ ϵhtrk ⋅ ϵetrk ⋅ ϵmult.trk ⋅ ϵLT ⋅ TN ⋅ σthick
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Yield Extraction

Y =
N(e,e′￼p)

Q ⋅ ϵhtrk ⋅ ϵetrk ⋅ ϵmult.trk ⋅ ϵLT ⋅ TN ⋅ σthick
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Yield Extraction

Y =
N(e,e′￼p)

Q ⋅ ϵhtrk ⋅ ϵetrk ⋅ ϵmult.trk ⋅ ϵLT ⋅ TN ⋅ σthick

TN = cA−α(Q2)

K. Garrow et al. PHYSICAL REVIEW C 66, 044613 (2002)

Q2 ≳ 2GeV2For
c → 1
α → 0.24

CaFe, Q2 > 1.8



Single Ratio Checks

R =
YA

YC12 MF

52



Q2 > 1.8 (baseline)
Q2: 1.7 - 2.1
Q2: 2.0 - 2.2
Q2: 2.2 - 2.8

Q2 Dependence on Single Ratios: A_MF / C12_MF 

Ydata =
NA(e,e′￼p)

Q ⋅ ϵhtrk ⋅ ϵetrk ⋅ ϵtLT ⋅ σthick ⋅ T ⋅ Z /A

53



Em < 90 MeV (baseline)

Missing Energy Dependence on  
Single Ratios: A_MF / C12_MF 

Em < 60 MeV 

Em < 120 MeV 

Ydata =
NA(e,e′￼p)

Q ⋅ ϵhtrk ⋅ ϵetrk ⋅ ϵtLT ⋅ σthick ⋅ T ⋅ Z /A

54
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Systematics

• central kinematical cuts were 
varied by +/- 2 standard  
deviations

• randomly-sampled  
gaussian for N=1000 distinct  
kinematical cut variations

• data analysis performed 
for every N=1000 cut 
variations to determine the 
systematic spread 

example of how  systematic cut sensitivity is studied in CaFe
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Systematics

• systematic spread (gray) in 
integrated missing 
momentum yield due to 
different cut variations  

• individual (colorful) 
contributions from each 
varied cut on the total 
integrated yield 

example of how  systematic cut sensitivity is studied in CaFe
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Systematics

• systematic spread (gray) in 
integrated missing 
momentum yield due to 
different cut variations  

• individual (colorful) 
contributions from each 
varied cut on the total 
integrated yield 

example of how  systematic cut sensitivity is studied in CaFe
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Systematics

• Typical systematics on 
single SRC ratios  
(example shown for 
SRC Ca48/40) 

• Systematic effects on 
single ratio of SRC/SRC 
seem to be ~ 1 %

example of how  systematic cut sensitivity is studied in CaFe


