

Tagged Deep Inelastic Scattering (TDIS) Program and Exploring Light Meson Structure

Rachel Montgomery on behalf of many colleagues, from many institutions and within:

2023 Summer Hall A/C Meeting, Jefferson Lab 06/29/23

From: arXiv:0809.3137v1

- TDIS \rightarrow structure of

 - Neutron
- Experimental evidence for mesonic content of nucleon • e.g. nucleon charge densities; meson form factors from electroproduction off
 - nucleon...
- Substantial theoretical work important to combine with data • e.g. how does mesonic content affect nucleon/nuclear PDF • Exact mesonic content of nucleon unknown!
- Pion and kaons play key roles in nucleon/nuclear structure
- Pion
 - Long range NN interaction; simplest QCD state; dynamical mass generation (Goldstone boson); flavour asymmetry in nucleon sea; nucleon/nuclear PDF...
- Kaon
 - Strangeness; momentum fractions carried by sea/glue; different gluon content than pion; combine with valence quark for full PDF evolution...
- Mass enigma...

Light mesons (pion/kaon)

• Crucial in better understanding nucleon structure

110		1120.019/p11203/
ohy	ysics/2008/illustra	ated-information/

Hadron	Observed Mass (MeV)	Higgs Generated Mass (MeV)
Proton (uud)	~940	~10
Pion (ud̄)	~140	~7
Kaon (us̄)	~490	~100

Quark mass acquisition functions from QCD theory: light quark dynamical mass generation from gluon cloud

- Dynamics of strong interactions in QCD:
 - ~99% nucleon mass
 - EHM see C. Robert's talk!
- Theoretical mass budgets for light π/K (Goldstone bosons) vastly different from heavy nucleon, and each other
- (different gluon contents in π/K ?)
- Comparing distributions of light quarks versus strange quarks within mesons • \rightarrow measurable signals of EHM
- Interesting implications for PDFs

Pion vs Proton Valence PDF

- and pion?"

From C. Roberts (INP) and see Craig's talk in this session

Continuum Schwinger function methods (DSE)

Ya Lu, Lei Chang, Khépani Raya, Craig Roberts, José Rodriguez-Quintero, 2203.00753 [hep-ph], Phys Lett B 830 (2022) 137130/1-7

Differences between pion and proton valence PDF

 "Much to be learnt before proton and pion structure understood in terms of DF... what is difference between distributions of partons within proton

• π/K structure not well known experimentally

Sullivan Process

meson cloud of nucleon

• JLab TDIS experiment

- DIS with spectator tagging
- Effective free targets not readily found in nature
- Directly tag mesonic content of nucleon
- Aims:
 - Pion and kaon F₂ in valence regime

Accessing Pions/Kaons

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{4E_0^2} \cos^2\frac{\theta}{2} \left[\frac{1}{\nu}F_2(x,Q^2) + \frac{2}{M}F_1(x,Q^2)\tan^2\right]$$

- Inclusive DIS cross-section \rightarrow access hadron sub-structure
- F₁, F₂ structure functions (SF)
- SF \rightarrow input for parton distribution functions

PR12-15-006

alastic

1

Measurement of Tagged Deep Inelastic		Collaboration of experimentalists and theori
Measurem Scattering (TDD-) Scattering (TDD-) May 18, 2015 May 18, 2015 May 18, 2015 May 18, 2015 Mal A and SBS Collaboration Proposal Mal Mal A and SBS Collaboration Proposal Mal A and SBS Collaboration Proposal Mal Mal A and SBS Collaboration Proposal Mal Mal Mentchank, Christian Weiss, Bogdan Mal Mal Mentchank, Christian Weiss, Bogdan Mal A and Mal Mal A and A an	Measurement of Kaon Structure Function through Tagged Deep Inelastic Scattering (TDIS) Kijun Park ^{1,f,*} , Cynthia Keppel ¹ , Dave Gaskell ¹ , Alexandre Canson de Rachel Montgomery ^{2,f} , John Annand ² , David Hamilton ² , Hoard Sokhan ² , Kieran Hamilton ² , Tanja Horn ^{3,f} , Dipangka Duta ⁴ , Gaston Seize ³ , Narbe Kalantarians ⁶ , Charles Hyde ⁷ , Sixue Qin ⁸ , Craig D. Robert ⁴ , Siau Huber ⁴ , ¹ efferson Lab, Newport News, VA 23606, USA ³ Catholic University of Glasgow, Glasgow Gl2 800 US	 Pion TDIS C12-15-006 PAC43 approved (C → subject to technical review) Awarded requested beam time A- rating - exciting physics: first time Sullivation process with both proton/neutron targets
John Annand (Spokesperson), David Hamilton, Dere Cell John Annand (Spokesperson), David Hamilton, Dere Cell In MacGregor, Bryan McKinnon, Bjoen Seitz, Daria Sokhan Ian MacGregor, Bryan McKinnon, Bjoen Seitz, Daria Sokhan UNIVERSITY OF GLASGOW UNIVERSITY OF ILLINOIS AT URBANA CHAMPAIGN Gordon Cates, Kondo Gnanvo, Richard Lindgren, Nilanga Liyanage, Jixie Zhang Gordon Cates, Kondo Gnanvo, Richard Lindgren, Nilanga Liyanage, Jixie Zhang Collecte OF WILLIM AND MARY COLLEGE OF WILLIM AND MARY Staodong Jiang LOS ALAMOS NATIONAL LABORATORY Michael Christy, Narbe Kalantarians, Michael Kohl, Peter Monaghan, Liganag Ti Michael Christy, Narbe Kalantarians, Michael Kohl, Peter Monaghan, Liganag Ti Michael Christy, Narbe Kalantarians, Michael Kohl, Peter Monaghan, Liganag Michael Christy, Marbe Kalantarians, Michael Kohl, Peter Monaghan, Michael K	 a. Meristiy of Regina, Regina, SK 345 0A2, Canada ^a Virginia University, Richmond, VA 23220, USA ^a Argonne National Laboratory, Argonne, IL 60439, USA ^b Ohio University, Athens, OH 43701, USA ^c Ontact Person bokesperson 	 Kaon TDIS Run group C12-15-006A PAC45 approved No additional beam time/detectors First Sullivan process extraction of kaon S Jeopardy this year (PAC51)
	Where will TDIS lie amongst	existing data?

- SF

where will i bio lie amonyst chisting uata?

rists

an

HERA Tagged DIS

•Sullivan process and meson cloud virtual target

- •Pion sea region, low Bjorken x, high Q²
- •6<Q²<100GeV²; 1.5e⁻⁴<x<3.0e⁻²
- •Leading neutron tagged in ep \rightarrow e'Xn
- Charged pion SF extracted

TDIS:

- Valence regime
- Higher x, lower Q²
- Evolution between kinematics

Ratio K/pi u-quark distributions

Х

- Valence region Drell Yan
- CERN/Fermilab

- Large-x region interesting historically substantial theory
- pQCD, DSE, light-front, ..., NLO, gluon re-summation
- Practically non-existent data for kaon
- More data needed for reducing uncertainties in global PDF
- Future DY data expected from COMPASS++/AMBER at CERN (2019 LOI arXiv:1808.00848)

<u>TDIS</u>

- Independent cross-check → PDF universality
- Extend to neutral pions
- More data essential

Example Previous Data

Example shown: JAM collaboration's combined HERA/DY analysis for PDF fitting, w/ MC technique for uncertainties

DY

LN

Non-overlapping uncertainties - tension at large x

- Large-x region interesting historically substantial theory

- More data needed for reducing uncertainties in global PDF
- Future DY data expected from COMPASS++/AMBER at

TDIS

- Independent cross-check → PDF universality
- Extend to neutral pions
- More data essential

TDIS Measurements

Independent Check, add to sparse data

8 < W² < 18 GeV² $1 < Q^2 < 3 \text{ GeV}^2$ 0.05 < x < 0.2

Expected world first

• Small -t to maximise "true" pion content • Very low momentum recoiling hadrons (60 - 400 MeV/c) \rightarrow need novel detector

Need for High Luminosity

- Predictions shown above based on phenomenological pion cloud model (T.J. Hobbs)
- Tagged orders of magnitude smaller than DIS signal \rightarrow need high luminosity!
- Measure ratio of tagged to total inclusive DIS cross-sections (reduce systematic uncertainties)

$$R^{T} = \frac{d^{4}\sigma(ep \to e'Xp')}{dxdQ^{2}dzdt} / \frac{d^{2}\sigma(ep \to e'X)}{dxdQ^{2}} \Delta z\Delta t \sim \frac{F_{2}^{T}(x,Q^{2},z,t)}{F_{2}^{p}(x,Q^{2})} \Delta z\Delta t$$

Extraction depends on pion flux model Assuming pion exchange dominant $F_2^T(x, Q)$

T.J. Hobbs, Few-Body Syst 56, 363 (2015)

$$Q^2, z, t) = \frac{R^T}{\Delta z \Delta t} F_2^p(x, Q^2)$$

Kaon TDIS will use same method

- JLab's fixed target, high current Halls are ideal for TDIS!
- 50µA 11 GeV e⁻ beam on high density target
- H/D gas; 40 cm length; 1 cm diameter; 25 µm walls; 3 - 4 atm; room temp (MSU)
- \rightarrow high luminosity 2.9 x 10³⁶ cm⁻²s⁻¹
- e' detection in reconfigured SBS
 - Current use in Hall A for nucleon E/M FF suite of experiments
 - GEMs (SBS);
 - threshold Cherenkov (HERMES RICH or new);
 - calorimeter (CLAS LAC)
 - Electron PID and (L2) trigger, tracking and π rejection ($\sim 10^{-4}$)
- High rate multiple time projection chamber (mTPC) for tagging

- Division of volume into chambers
- Reduces background rates
- Volume filled with low density gas at STP
- Fast drift times (~2µs)
- Readout planes
 - Multi layer GEM foils
 - Segmented readout pads
- Tag recoils/spectators
 - Vertex tracking
 - Momentum reconstruction (solenoid)
 - PID by dE/dx

Simulation

e beam into page

protons in mTPC (yellow) proton (yellow) and pion (red) from K TDIS event

 In-depths studies within SBS collaboration's Geant4 framework g4sbs • Team of contributors (e.g. C. Ayerbe, E. Fuchey, S. Wood, A. Tadepalli, D. Dutta, R. Montgomery, A. Puckett, M. Carmignotto, A. Nadeeshani...and more!)

 mTPC also simulated separately using CERN's magboltz/garfield •Gas mixtures; electric field...

Recent updates to event generators, background/accidentals rate studies

Tracking developments on-going, especially for high rate Deuterium case

mTPC Prototyping

Triggerless Readout at JLab

- Plan to read data continuously from \geq 35k channels Parallel data flow
- Event synch with triggered detectors (SBS)

- SAMPA ASIC: pre-amp, ADC, zero-suppression... (M. Bregant, Sao Paolo) Continuous sampling w/ high readout speed (~1TB/s post zero-supp) possible for \sim 35k chan)
- TDIS is a driver for streaming readout developments

• Prototyping at JLab (E. Jastrzembski, G. Heyes, et al.) • Using Oak Ridge SAMPA FEC for the ALICE TPC

Example Projected Results

- Shown based on phenomenological pion cloud model
 - T.J. Hobbs, Few Body Syst. 56 (2015) no.6-9
 - J.R. McKenney et al., Phys. Rev. D93 (2016), 05011
- Kinematical mapping of F₂ SF
- Low momentum reach of mTPC essential to obtain shapes of curves

 Projected range of coverage for relevance to valence quark distribution analyses

Also...TDISn and Neutron Structure C12-15-006B

Elastic e-n scattering and EM form factor G_Mⁿ

EMC effect in deuteron

• Effective free neutron target • Neutron SF... plus other topics • c.f. BoNuS, BoNuS12, MARATHON

 Independent cross-check systematics Increased statistics in TDISn range Calibrate mTPC acceptance and efficiency • QE scattering on deuteron: HCAL for n; mTPC for p; SBS for e' • Independent normalisation check of tagging method across experiments

And there is even more....

On behalf of members of group studying TDIS 22GeV including: C. Ayerbe; P. Barry; D. Dutta; R. Ent; T. Horn; C. Keppel; R. Montgomery

- Phase space projections based on Patrick Barry (JLab) • Includes T.J. Hobbs' et al. $F_{2^{TT}}$ model and JAM PDFs

- Vastly expands kinematic phase space (e.g. Q^2 , W^2 , x_{π} , k_{T}) • e.g. W_{π^2} and x_{π}
- PDF studies: $W_{\pi^2} > 1.04 \text{GeV}^2$ to minimise ρ resonance
- 22GeV: More data available above 1.04GeV²
- 11GeV: still data above 1.04GeV² for PDF studies
- 11GeV: novel studies of resonances at low W_{π^2}
- 11GeV: crucial to realise challenging experimental technique

JLab22 Extension Studies

Figure: Leading twist unpolarized TMDs at the hadron scale. Left frame: Pion from Minkowski space Bethe-Salpeter equation model with constituent quarks, massive one-gluon exchange and quark-gluon form factor [1]. Right frame: Proton from a Light-front model with constituent quarks and a scalar diquark [2].

W. de Paula, E. Ydrefors, J.H. Nogueira Alvarenga, T. Frederico, G. Salmè, PRD 105 (2022) L071505, and in preparation.

[2] E. Ydrefors, T. Frederico PRD 104 (2021) 114012; and arXiv: 2211.10959 [hep-ph].

- T. Frederico (Instituto Tecnologico de Aeronautica)
- E. Ydrefors (Chinese Academy of Sciences)

- Data available between W_{π^2} 1.04 and 4GeV²
- SIDIS on virtual meson possibility \rightarrow meson TMDs!
- Expect interesting differences between meson/nucleon TMDs
- Assume W_{π^2} used to produce π
- Measure e', N' and π
- Would need to add detector for π
 - Next step of study

Plots: D. Dutta (MSU), C. Ayerbe (W&M)

Gateway to Spectator Tagging at EIC

- Meson structure crucial component in nucleon's structure
- Comparing π/K experimental insights into EHM
- Experimental data for π/K SF extremely sparse

✓ TDIS at JLab: **unique** opportunity

- Broad physics program
- Understand nucleon & meson structure on deeper level
- Add to sparse world data set for meson SF in mid to high x_{π} range!
 - Universality in valence regime for pion PDF
 - Kaon SF almost empty world data!
- TDIS 11GeV very important gateway for range of future programs
 - Future EIC and proposed EicC
 - Potential TDIS at 22GeV JLab
 - e.g. TDIS 11GeV key for realising:

✓TDIS at JLab: status

- C12-15-006 up for jeopardy this year (PAC51)
- Lots of exciting developments to report on, examples:
 - design, technical, software, theory
 - expansion of TDIS program (kaon, neutron);
 - increased demand for TDIS data in community wrt theory and future experiments...

Summary

p(k)n(k')

meson tagging techniques, challenging novel instrumentation, improving models/predictions...

