2023 Summer Hall A/C Meeting

## Mass Determination of Light Hypernuclei with the Decay Pion Spectroscopy -- from MAMI to JLab --

Contents

- Hypernuclear Physics
- Decay Pion Spectroscopy
  - > Principle
  - Previous Studies (MAMI exp.)
  - DPS at JLab (LOI12-23-011)

The University of Tokyo Sho Nagao for the JLab Hypernuclear Collaboration

beam

(HIN)

Decay pion Spectromet (Eng

June 30, 2023

### Hypernuclei

- Few-body system with strangeness
- Investigation of YN interaction based on SU<sub>f</sub>(3), nuclear structure, impurity effect, and neutron-stars
- Λ binding energies by the emulsion, missing-mass, invariant-mass spectroscopies
- Precise measurement is essential especially for s-, p-shell hypernuclei
- Discussion about <sup>3</sup><sub>Λ</sub>H puzzle, CSB, ΛN-ΣN coupling effect etc...



#### Hypertriton Puzzle



- $\succ$  Shallow  $B_{\Lambda}$
- Similar lifetime to free  $\Lambda$  (263 ps)
- > No other A=3 hypernuclei

- > Deeply  $B_{\Lambda}$ ?
- Shorter lifetime?
- ➢ Bound or Resonance state of nn∧

### Charge Symmetry Breaking (CSB)



- Good Charge-Symmetry between p-p and n-n
- ➢ Good symmetry for iso-mirror nuclei e.g. <sup>3</sup>H and <sup>3</sup>He
- Small CSB due to quark mass differences
- Charge-Symmetry is large or small with strengeness
- Limited scattering data
- Investigation of CSB with iso-mirror hypernuclei

#### CSB on A=4 system



#### CSB on A=7 system



[T. Gogami et al., PRC94 (2016) 021302(R).

- > No observation of large CSB on p-shell hypernuclei
- Measurement with <100 keV accuracy is essential</p>

| Rece                                             | nt work of Chir         | alEFT [PR           | C107 (2023      | 3) 024002]                                                |
|--------------------------------------------------|-------------------------|---------------------|-----------------|-----------------------------------------------------------|
|                                                  |                         | $\Delta T$          | $\Delta V_{NN}$ | $\Delta B_{\Lambda}$                                      |
|                                                  | NLO13<br>NLO13-CSB      | 7 8                 | -24<br>-24      | -17<br>-40                                                |
| ${}^7_{\Lambda}$ Be - ${}^7_{\Lambda}$ Li*       | NLO19<br>NLO19-CSB      | 6<br>6              | $-40 \\ -41$    | -34<br>-35                                                |
|                                                  | Hiyama [13]<br>Gal [37] | 3                   | $-70 \\ -70$    | 150<br>17                                                 |
|                                                  | Experiment [6]          |                     |                 | $-100 \pm 90$                                             |
| $\frac{7}{\Lambda}$ Li* - $\frac{7}{\Lambda}$ He | NLO13<br>NLO13-CSB      | <mark>8</mark><br>7 | -13<br>-14      | -5 -31                                                    |
|                                                  | NLO19<br>NLO19-CSB      | 5<br>5              | $-22 \\ -21$    | -17 -16                                                   |
|                                                  | Hiyama [13]<br>Gal [38] | 2                   | $-80 \\ -80$    | 130<br>-28                                                |
|                                                  | Experiment [6]          |                     |                 | $\begin{array}{r} -20 \pm 230 \\ -50 \pm 190 \end{array}$ |
|                                                  | NLO13<br>NLO13-CSB      | 12<br>12            | 8<br>7          | 16<br>178                                                 |
| ${}^{8}_{\Lambda}$ Be - ${}^{8}_{\Lambda}$ Li    | NLO19<br>NLO19-CSB      | 7<br>6              | -11<br>-11      | -6<br>143                                                 |
|                                                  | Hiyama [13]             |                     | 40              | 160                                                       |

11

-81

Gal [37]

Experiment [4]

49  $40 \pm 60$ 

#### Hypernuclear Formation - Decay



### $B_{\Lambda}$ Accuracy



#### Higher-resolution mass spectroscopy



- High-resolution & High-precision hypernuclear mass spectroscopy
  - Stopping in a target
  - Two-body decay with π<sup>-</sup> & nucleus
     → hypernuclear ground-state
- > Momentum resolution  $\Delta p \sim 0.1 \text{ MeV/c}$
- > Mass precision  $\Delta M \sim 0.01 \text{ MeV/c}^2$
- Good calibration sources
- ➤ Tagging Kaon

### List of decay pion candidates

| Hypernuclei                 | Decay mode                    | $p_{\pi^-}~({ m MeV}/c)$ |                        |  |
|-----------------------------|-------------------------------|--------------------------|------------------------|--|
| $^{3}_{\Lambda}\mathrm{H}$  | $^{3}\mathrm{He}$ + $\pi^{-}$ | 114.4                    |                        |  |
| $^4_{\Lambda}{ m H}$        | $^{4}\mathrm{He}$ + $\pi^{-}$ | 133.0                    |                        |  |
| $^{6}_{\Lambda}\mathrm{H}$  | $^{6}\mathrm{He}$ + $\pi^{-}$ | 135.3                    | 71 : torget            |  |
| $^7_{\Lambda}{ m He}$       | $^{7}\mathrm{Li}+\pi^{-}$     | 114.8                    | 'Li target             |  |
| $^{7}_{\Lambda}$ Li         | $^{7}\mathrm{Be} + \pi^{-}$   | 108.1                    |                        |  |
| $^{8}_{\Lambda}\mathrm{He}$ | $^{8}$ Li + $\pi^{-}$         | 116.5                    |                        |  |
| $^{8}_{\Lambda}$ Li         | $2lpha+\pi^-$                 | 124.2                    |                        |  |
| $^{8}_{\Lambda}\mathrm{Be}$ | ${}^8\mathrm{B}+\pi^-$        | 97.2                     |                        |  |
| $^9_{\Lambda}$ Li           | $^{9}\mathrm{Be} + \pi^{-}$   | 121.3                    | <sup>9</sup> Be target |  |
| $^{9}_{\Lambda}\mathrm{B}$  | $^{9}\mathrm{C}+\pi^{-}$      | 96.8                     |                        |  |
| $^{10}_{\Lambda}{ m B}$     | $^{10}C + \pi^-$              | 100.5                    |                        |  |
| $^{11}_{\Lambda}{ m B}$     | $^{11}\mathrm{C}$ + $\pi^-$   | 86.5                     |                        |  |
| $^{12}_{\Lambda}{ m B}$     | $^{12}\mathrm{C}$ + $\pi^-$   | 115.9                    | <sup>12</sup> C target |  |
| $^{12}_{\Lambda}{ m C}$     | $^{12}\mathrm{N}+\pi^-$       | 91.5                     |                        |  |
| $^{13}_{\Lambda}{ m C}$     | $^{13}\mathrm{N}+\pi^-$       | 92.3                     |                        |  |
| $^{14}_{\Lambda}{ m C}$     | $^{14}\mathrm{N}$ + $\pi^-$   | 101.2                    |                        |  |
| $^{15}_{\Lambda}{ m N}$     | $^{15}\mathrm{O}+\pi^-$       | 98.4                     |                        |  |
| $^{16}_{\Lambda}{ m N}$     | $^{16}\mathrm{O}$ + $\pi^-$   | 106.2                    |                        |  |

- Momentum of 100-130 MeV/c
- > Emitting  $\pi^-$  from neutron-rich hypernuclei
- Decay prob. are measured and calculated [NPA754(2005)157c, PLB681(2009)139, PTPS117(1994)477.]
- Dependence on parent hypernuclei
- Some decay pion momenta are very close
- Identification by changing the target

Decay Pion Spectroscopy
 > New determination of B<sub>Λ</sub>(<sup>4</sup><sub>Λ</sub>H) at MAMI
 > From MAMI to JLab
 > LOI12-23-011 (parallel exp. to (e,e'K<sup>+</sup>) exp.)

#### Mainz Microtron (MAMI)



 $\triangleright$ 

 $\succ$ 

 $\succ$ 

 $\triangleright$ 

### Setup of A1-Hall MAMI



- Spek-A and -C as pion spectrometers
- Kaos as Kaon tagger
- Tilted <sup>9</sup>Be target (0.125 mm thick)



### Decay Pion Spectrometer (Spek-A, -C)



> 0.1 MeV/c accuracy ← uncertainty of  $E_e$ 

p.14 / 33

Ee'(calc) - Ee'(measure) [MeV]

### Kaon Tagger (Kaos)



#### PID on coincidence time spectrum



#### Pion Momentum Distribution (MAMI)



#### Latest results of ${}^{4}_{\Lambda}H$

 $B_{\Lambda}$  (MAMI 2012) = 2.12 ± 0.01 ± 0.09 (MeV)  $B_{\Lambda}$  (MAMI 2014) = 2.157 ± 0.005 ± 0.077 (MeV)

[PRL 114 (2015) 232501.] [NPA 954 (2016) 149.]



#### **Decay Pion Spectroscopy** @ JLab

#### LOI12-23-011 High-resolution spectroscopy of light hypernuclei with the decay-pion spectroscopy

> 30 times hypernuclear yields per unit time
<10 keV systematics</p>

### Motivation

Good B<sub>A</sub> determination of <sup>4</sup><sub>A</sub>H at the MAMI experiments Expecting a new determination for <sup>3</sup><sub>A</sub>H with the Li target experiment ~1/10 yields of decay-pions from other A>4 hypernuclei Needs of experiments with much higher statistics Limitation of ..... K<sup>+</sup> identification DAQ rate Does level in the Hall

#### $\rightarrow$ DPS at JLab

### (e,e'K<sup>+</sup>) spectroscopy at JLab (E12-15-008, E12-20-013)



June 30, 2023 2023 Summer Hall A/C Meeting

### Additional pion spectrometer Enge



- Similar concept to MAMI exp.
- Third spectrometer (Enge) as a decay-pion spectrometer
- Background suppression by tagged K<sup>+</sup>
- > Coincidence measurement of " $\pi^-$ , K<sup>+</sup>"
- Tilted targets

#### Pion spectrometer





- Split-pole magnet @JLab storage
- Hardware spectrometer
- Position at FP = Momentum
- Good momentum resolution

 $\Delta p/p = 4 \times 10^{-4}$ 

- Wide momentum bite p = 70 - 170 MeV/c
- > Dark Spectrometer  $\Delta \Omega = 4 \text{ msr}$

#### Detectors of Enge



- Sci-Fi detector for momentum measurement
- Drift-Chamber for target reconstruction
- 2-layers of TOF countersfor Trigger and Timing counter
- Expected single-rate: several 10 kHz
- Expected DAQ rate: 100 Hz

#### Capability of better

- Kaon Identification of HKS detectors (2-layers AC → 3-layers AC & 2-layers WC)
- DAQ Max. Rate (several 100 Hz → several kHz) & Does Limit

Higher beam current (20  $\rightarrow$  50 µA) & Thicker target (40  $\rightarrow$  150 mg/cm<sup>2</sup>)  $\rightarrow$  ×9 Gain Factor



#### Capability of better

- Kaon Identification of HKS detectors (2-layers AC → 3-layers AC & 2-layers WC)
- DAQ Max. Rate (several 100 Hz  $\rightarrow$  several kHz) & Does Limit

Higher beam current (20  $\rightarrow$  50  $\mu$ A) & Thicker target (40  $\rightarrow$  150 mg/cm<sup>2</sup>)  $\rightarrow$   $\times$ 9 Gain Factor



#### Capability of better

- Kaon Identification of HKS detectors (2-layers AC → 3-layers AC & 2-layers WC)
- DAQ Max. Rate (several 100 Hz → several kHz) & Does Limit
   Higher beam current (20 → 50 µA) & Thicker target (40 → 150 mg/cm<sup>2</sup>) → ×9 Gain Factor

#### > Higher beam energy

• Increasing no. virtual photons associated Λ production (×5 Gain Factor)



#### Capability of better

- Kaon Identification of HKS detectors (2-layers AC → 3-layers AC & 2-layers WC)
- DAQ Max. Rate (several 100 Hz → several kHz) & Does Limit
   Higher beam current (20 → 50 µA) & Thicker target (40 → 150 mg/cm<sup>2</sup>) → ×9 Gain Factor

#### > Higher beam energy

• Increasing no. virtual photons associated A production (×5 Gain Factor)

#### > Data taking with several targets (Li ~ Pb)

- Parallel experiment with proposed (e,e'K<sup>+</sup>)
- Identification of parent hypernucleus

#### > Off-beam momentum calibration

• Momentum calibration with  $\alpha$ -sources

| Nuclide             | Typical Energy           | Momentum                   |  |
|---------------------|--------------------------|----------------------------|--|
|                     | (MeV)                    | $({ m MeV}/c/q)$           |  |
| $^{148}Gd$          | 3.128787(24)             | 77.03415(29)               |  |
| $^{237}Np$          | 4.7710(15), 4.7880(15)   | 94.326(15), 94.494(15)     |  |
| $^{241}\mathrm{Am}$ | 5.44280(13), 5.48556(12) | 100.7526(12), 101.1479(11) |  |
| <sup>244</sup> Cm   | 5.76270(3), 5.80482(5)   | 103.6734(3), 104.0519(4)   |  |

#### Capability of better

- Kaon Identification of HKS detectors (2-layers AC → 3-layers AC & 2-layers WC)
- DAQ Max. Rate (several 100 Hz → several kHz) & Does Limit
   Higher beam current (20 → 50 µA) & Thicker target (40 → 150 mg/cm<sup>2</sup>) → ×9 Gain Factor

#### > Higher beam energy

• Increasing no. virtual photons associated A production (×5 Gain Factor)

#### Data taking with several targets (Li ~ Pb)

- Parallel experiment with proposed (e,e'K<sup>+</sup>)
- Identification of parent hypernucleus

#### > Off-beam momentum calibration

- Momentum calibration with  $\alpha$ -sources

| = | Nuclide             | Typical Energy           | Momentum                   |  |
|---|---------------------|--------------------------|----------------------------|--|
|   |                     | $(\mathrm{MeV})$         | $({ m MeV}/c/q)$           |  |
| - | $^{148}Gd$          | 3.128787(24)             | 77.03415(29)               |  |
|   | $^{237}\mathrm{Np}$ | 4.7710(15), 4.7880(15)   | 94.326(15), 94.494(15)     |  |
|   | $^{241}\mathrm{Am}$ | 5.44280(13), 5.48556(12) | 100.7526(12), 101.1479(11) |  |
| _ | $^{244}$ Cm         | 5.76270(3), 5.80482(5)   | 103.6734(3), 104.0519(4)   |  |

# > 30 times hypernuclear yields per unit time <10 keV systematics</p>

### Expected (<sup>6</sup>Li target)



#### Expected (<sup>9</sup>Be target)



#### Expected (<sup>12</sup>C target)



### Summary

#### > A binding energies measurement with the decay pion spectroscopy

- DPS started and has developed at MAMI Mainz
- First observation of decay-pion from <sup>4</sup><sub>A</sub>H
- $B_{\Lambda}(^{4}_{\Lambda}Hg.s) = 2.157 \pm 0.005 \pm 0.077$  (MeV) from MAMI2014

#### New stage of the decay pion spectroscopy at JLab (LOI12-23-011)

- Parallel experiment with the proposed (e,e'K<sup>+</sup>) experiments
- Third spectrometer Enge as a decay pion spectrometer
- Expecting much better hypernuclear yield and Excellent accuracy



### A binding energy of light hypernuclei



### Background sources



- → Major background source of  $\pi^-$  from in-flight hyperon decay, especially from  $\Sigma^- \rightarrow n + \pi^-$
- > Most of  $\pi^-$  backgrounds go to the forward angles
- Decay pion measurement at the backward angles helps getting better S/N

### DPS with (K $^-$ stop, $\pi^-$ ) [A. Kawachi Ph.D thesis, U-Tokyo]



### DPS with $(K_{stop}^{-}, \pi^{-})$ [H. Tamura et al., Phys. Rev. C40 (1989) R479, A. Kawachi Ph.D thesis, U-Tokyo]



- > Target mass dependence on production rate of  ${}^{4}_{\Lambda}H$
- No peaks from other hypernuclei
- ➢ Decay pion peaks from several hypernuclei are expected (several times less than <sup>4</sup>∧H)
- Background suppression and High-resolution is essential

#### Preliminary Results of 2022 exp. (New Li target)



- Similar performance to the past experiments
- Better no. coincidence peak
- $\succ$  Good  $\pi^+$  and p ID in Kaos
- > Expecting hypernuclear events between " $\pi^-$ ,  $\pi^+$ " and " $\pi^-$ , p"

### Uncertainties

|                                 | Uncertainty |  |  |
|---------------------------------|-------------|--|--|
| Mag. Field Stability            | < 10 keV    |  |  |
| Beam Energy in Spec. Calib. run | 70 keV      |  |  |
| Beam Position                   | 10 keV      |  |  |
| Energy Loss Correction          | < 10 keV    |  |  |
| Total                           | 77 keV      |  |  |

### Towarding 10 keV Accuracy

Accuracy of beam energy for elastic-scattering measurement limits our systematics



#### Toward much more Accurate measurement

Accuracy of beam energy for elastic-scattering measurement limits our systematics



p.42 / 33

### Toward much more Accurate measurement (DPS)

Accuracy of beam energy for elastic-scattering measurement limits our systematics





distance d

p.43 / 33

#### Update experiment for ${}^{3}_{\Lambda}$ H measurement



- Update experiment with a new Li target
- > Better  ${}^{4}_{\Lambda}$ H hypernuclear yield according to  $(K^{-}_{stop}, \pi^{-})$  experiment
- New 90 deg tilted Li target with a thickness of 2700 mg/cm<sup>2</sup>
- Better yield and Lower does level thanks to thick-target and low-current
- Data taking in 2022

### Yield Gain summary

Table 5: Hypernuclear yield gain (<sup>9</sup>Be target).

| Item          |                                            | MAMI | JLab | Yield Gain |
|---------------|--------------------------------------------|------|------|------------|
| Kinematics    | Beam Current $(\mu A)$                     | 20   | 50   | 2.5        |
|               | Int. VP Flux (A.U.)                        | 2.9  | 13.5 | 4.7        |
|               | Thickness $(mg/cm^2)$                      | 39   | 150  | 3.7        |
|               | $^{4}_{\Lambda}\mathrm{H}$ Stop. Prob. (%) | 42   | 81   | 1.9        |
|               | $^4_{\Lambda}\mathrm{H}$ Form. Prob. (%)   | 1    | 1    | 1.0        |
|               | Sub Total                                  |      |      | 81         |
| $K^+$ Tagger  | Solid Angle (msr)                          | 17   | 8.3  | 0.49       |
|               | Survival Ratio (%)                         | 40   | 30   | 0.74       |
|               | $K^+$ ID Eff. (%)                          | 48   | 81   | 1.7        |
|               | Lead-wall Eff. (%)                         | 50   | 100  | 2          |
|               | Sub Total                                  |      |      | 1.2        |
| $\pi^-$ Spec. | Solid Angle (msr)                          | 28   | 4    | 0.14       |
|               | Survival Ratio (%)                         | 32   | 51   | 1.6        |
|               | $\pi^-$ ID Eff. (%)                        | 90   | 90   | 1.0        |
|               | Sub Total                                  |      |      | 0.23       |
| Others        | CoinTime Eff. (%)                          | 68   | 90   | 1.3        |
|               | DAQ Eff. (%)                               | 87   | 90   | 1.0        |
| Total         |                                            |      |      | 31         |