Triaxial deformation of nuclei probed by Lambda particle

Masahiro Isaka, Hosei University

Grand challenges of hypernuclear physics

Interaction: "baryon-baryon interaction"

- 2 body interaction between baryons (Y: hyperon, N: nucleon)
 - hyperon-nucleon (YN)
 - hyperon-hyperon (YY)
- Major issues in hypernuclear physics

Structure: "many-body system of nucleons and hyperon"

Addition of hyperon as an impurity in (hyper)nuclei

- No Pauli exclusion between N and Y
- YN interaction is different from NN

Structure changes Unique structure, … etc.

Today: "deformation of hypernuclei"

Structure of Λ hypernuclei

Λ hypernuclei observed so far

- ullet Concentrated in light Λ hypernuclei
- Most have well-developed cluster structure

Toward heavier and exotic Λ hypernuclei

Experiments at JLab, J-PARC, etc.

- Heavier (sd-shell and more) hypernuclei can be produced
- sd-shell nuclei with 16<A<40 have various deformations

Toward heavier and exotic Λ hypernuclei

Experiments at JLab, J-PARC, etc.

- Heavier (sd-shell and more) hypernuclei can be produced
- sd-shell nuclei with 16<A<40 have various deformations

Structure study of deformed hypernuclei

Deformation of nuclei

 $|\beta_2|$

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

Spherical

Deformed

Most of nuclei are deformed

- Deformation can be confirmed through B(E2) measurement
- Mid of *sd*-shell region with 20≲A≲30 is the lightest having large deformation

20

Description of nuclear deformation

• Nuclear quadrupole deformation (β , γ)

- β : degree of quadrupole deformation
- Middle • γ: (tri)axiality **60**° Long Short Short γ **Triaxial deformation** $\sqrt{\gamma} \approx 30^{\circ}$ no symmetry axis Long $\gamma = 60^{\circ}$ **Oblate deformation N**° $\mathbf{0}$ ong β short axis symmetry $\gamma = 0^{\circ}$ $\beta = 0$ Short **Spherical Prolate deformation** long axis symmetry

Description of nuclear deformation

• Nuclear quadruple deformation (β , γ)

long axis symmetry

Deformation of ²⁶Mg

- Large B(E2): at least proton distribution is deformed
- In Nilsson diagram, large shell gaps appear with Z=12 in prolate side and N=14 with oblate deformations Nilsson diagram

Interest: What is deformation property? Triaxially deformed?

Davydov model: rigid rotor with triaxial deformation

- Low-lying $K = 2^+$ band built on 2^+_2 state appears due to γ vibration
- Ratios of excitation energies and B(E2) values depend on γ

_	$E_x(2^+_2)/E_x(2^+_1)$				$B(E2; 2_2^+ \to 2_1^+)/B(E2; 2_2^+ \to 0_1^+)$		
	γ _{deg}	$\frac{\varepsilon_{s}(2)}{\varepsilon_{1}(2)}$	$b(E2; 21 \rightarrow 0)$	$b(E2; 22 \rightarrow 0)$	$b(\text{E2}; 22 \rightarrow 21)$	$\frac{b(\text{E2}; 22 \rightarrow 21)}{b(\text{E2}; 22 \rightarrow 0)}$	
Axially	0	<u>م</u>	1.000	0	0	1.43	
symmetric	5	64.2	0.993	0.0074	0.011	1.49	
'	10	15.9	0.972	0.028	0.051	1.70	
	15	6.85	0.947	0.053	0.143	2.70	
	20	3.73	0.933	0.067	0.357	5.35	
	22.5	2.93	0.937	0.0625	0.563	19.02	
	24	2.59	0.948	0.052	0.782	15.1	
	25	2.41	0.955	0.0425	0.865	20.6	
	26	2.26	0.968	0.0324	1.01	31.2	
	28	2.07	0.99	0.010	1.28	126	
Triaxial	29	2.01	0.996	0.004	1.41	363	
	30	2.00	1.000	0	1.43	∞	

decreased

Davydov and Filippov, Nucl. Phys. 8,237(1958)

increased

Situation of Mg nuclei

Situation of Mg nuclei

Comparison of exp. data with Davydov model

²⁴Mg and ²⁶Mg: candidates of triaxially deformed nuclei

²⁴Mg

$$\frac{E_x(2_2^+)}{E_x(2_1^+)} = \frac{4.24 \text{ MeV}}{1.37 \text{ MeV}} \approx 3.1$$

 $\rightarrow \gamma \rightleftharpoons 22^{\circ}$ by Davydov model

$$\frac{B(E2; 2_2^+ \rightarrow 2_1^+)}{B(E2; 2_2^+ \rightarrow 0_1^+)} \coloneqq 1.9$$

$$\rightarrow \gamma \doteq 10^\circ \text{ by Davydov model}$$

 ^{26}Mg

$$\frac{E_x(2_2^+)}{E_x(2_1^+)} = \frac{2.94 \text{ MeV}}{1.81 \text{ MeV}} \approx 1.6$$

$$\frac{B(E2; 2_2^+ \to 2_1^+)}{B(E2; 2_2^+ \to 0_1^+)} \coloneqq 18$$

 $\rightarrow \gamma \approx 25^{\circ}$ by Davydov model

Recent theoretical studies on ²⁶Mg

Interest: deformation property because Z=12 (prolate) vs. N=14 (oblate)

• Coexistence of deformations/γ-softness of energy surface

Terasaki et al. NPA**621**(1997) Rodriguez-Guzman et al. NPA**709** (2002) Peru et al PRC**77** (2008) Hinohara, Kanada-En'yo PRC**83** (2011)

[MeV]

-205

-210

• Difference of isospin character of 2_1^+ and 2_2^+

Kanada-En'yo, et al., Phys. Rev. C102,014607(2020)

- Triaxial deformation and importance of γ degree-of-freedom
- Difference from rigid-rotor model

Short summary: deformation of ²⁶Mg

• Shell gap in Nilsson diagram at Z=12 (prolate) vs. N=14 (oblate)

Interest: What is deformation property of ²⁶Mg? Candidate of triaxially deformed nuclei

- Large B(E2): proton distribution is deformed
 - No information on neutron distribution and triaxiality
- Comparison with theoretical studies
 - Low-lying 2_2^+ is a sign of triaxial deformation in rigid rotor model
 - Difference from rigid rotor: γ-softness, isospin character

To identify triaxial deformation using a Λ particle as a probe

What is expected in deformed Λ hypernuclei

Deformation change

 $\bullet\,\Lambda$ particle can change nuclear deformation

\bullet Difference of \mathbf{B}_{Λ} depending on nuclear deformation

• Energy shifts in excitation spectra

\bullet Coupling of Λ to deformed nuclei shows unique structure

• For example, rotational band, mixing of configuration, ... etc.

What is expected in deformed Λ hypernuclei

Deformation change

 $\bullet\,\Lambda$ particle can change nuclear deformation

\bullet Difference of \mathbf{B}_{Λ} depending on nuclear deformation

• Energy shifts in excitation spectra

\bullet Coupling of Λ to deformed nuclei shows unique structure

• For example, rotational band, mixing of configuration, ... etc.

Coupling of Λ in *p*-orbit: *p*-states of ${}^{9}_{\Lambda}$ Be

⁹ ABe: axially symmetric 2α clustering

Two rotational bands as *p***-states**

- Anisotropic p orbit of Λ hyperon
- Axial symmetry of 2α clustering

\rightarrow *p*-orbit parallel to/perpendicular to the 2 α clustering

Triaxial deformation

If nucleus is triaxially deformed, *p*-states can split into 3 different state

Triaxial deformation

Prolate deformation

Candidate: Mg hypernuclei

Observing the 3 different *p***-states is strong evidence of triaxial deformation**

HyperAMD: Antisymmetrized Molecular Dynamics for hypernuclei

Hamiltonian

$$\hat{\boldsymbol{H}} = \hat{\boldsymbol{T}}_{N} + \hat{\boldsymbol{V}}_{NN} + \hat{\boldsymbol{T}}_{\Lambda} + \hat{\boldsymbol{V}}_{\Lambda N} - \hat{\boldsymbol{T}}_{g}$$

NN : Gogny D1S Λ N : YNG interaction

Wave function

• Nucleon part: Slater determinant Spatial part of s.-p. w.f. is described as Gaussian packets

Single-particle w.f. of Λ hyperon:
 Superposition of Gaussian packets

• Total w.f.:
$$\psi(\vec{r}) = \sum_{m} c_{m} \varphi_{m}(r_{\Lambda}) \otimes \frac{1}{\sqrt{A!}} \det[\varphi_{i}(\vec{r}_{j})]$$

$$\varphi_N(\vec{r}) = \frac{1}{\sqrt{A!}} \det[\varphi_i(\vec{r}_j)]$$
$$\varphi_i(r) \propto \exp\left[-\sum_{\sigma=x,y,z} V_\sigma (r - Z_i)_\sigma^2\right] \chi_i \eta_i$$
$$\chi_i = \alpha_i \chi_\uparrow + \beta_i \chi_\downarrow$$

$$\varphi_{\Lambda}(r) = \sum_{m} c_{m} \varphi_{m}(r)$$
$$\varphi_{m}(r) \propto \exp\left[-\sum_{\sigma=x,y,z} \mu v_{\sigma} (r - z_{m})_{\sigma}^{2}\right] \chi_{m}$$
$$\chi_{m} = a_{m} \chi_{\uparrow} + b_{m} \chi_{\downarrow}$$

Theoretical Framework: HyperAMD

Procedure of the numerical calculation

Theoretical Framework: HyperAMD

Procedure of the numerical calculation

Results of ²⁶Mg

- Low-lying K=2 band is obtained
- Triaxially deformed and γ -soft energy surface

²⁶Mg ground state: β =0.41, γ =33°

Results: ${}^{27}_{\Lambda}Mg$

• 3 bands are obtained by Λ in *p*-orbit \rightarrow Splitting of the *p* states

Results : Single particle energy of Λ hyperon ϵ_{Λ}

- Λ single-particle energy is different in each p orbit with triaxial deformation
- 3 different p-states appear if the core nucleus is triaxially deformed

Deformation of the core nucleus ²⁶Mg

- *sd*-shell nuclei such as ²⁶Mg are lightest ones with large deformation
- Deformation property of ²⁶Mg is of particular interest, where Z = 12 and N = 14 favor different deformations
- Large B(E2): proton distribution is deformed
 - No information on neutron distribution and triaxiality
- Comparison with theoretical studies
 - Low-lying 2_2^+ is a sign of triaxial deformation in rigid rotor model
 - Difference from rigid rotor: γ-softness, isospin character

Summary

$^{27}\Lambda$ Mg: a candidate of triaxially deformed hypernucleus

- Splitting of *p*-states in ${}^{27}{}_{\Lambda}$ Mg is predicted due to triaxial deformation
- Λ in *p*-states does not change nuclear deformation significantly
- $\blacktriangleright \Lambda$ can be a unique probe of triaxial deformation

Future plans

- Detailed and further analysis of structure of ${}^{27}_{\Lambda}$ Mg and 26 Mg: $\beta\gamma$ -dependence, rotational bands, B(E2), ... etc.
- Production cross section of ${}^{27}_{\Lambda}$ Mg: How to identify?