

Jan Vanek Brookhaven National Laboratory EICUG Early Career Workshop 07/24/2023

∧ POLARIZATION PUZZLE

- In the 70's, it was discovered that Λ hyperons are polarized in collisions of unpolarized p+Be collisions, which raised many questions
 G.Bunce, et al.: Phys.Rev.Lett. 36, 1113-1116 (1976)
- Over nearly 50 years, Λ polarization has been seen in p+p, p+A, e+p, e⁺e⁻ collisions up to collision energies about 40 GeV

- What is the origin of the Λ polarization?

- Does polarization of Λ depend on spin of the target/projectile?
- Is the observed Λ polarization an initial state effect or a final state effect?
- Is there Λ hyperon spin correlation present in high energy collisions? Parton spin correlation and entanglement? W. Gong, et al.: Phys.Rev.D 106 (2022) 3, L031501

07/24/202

07/24/20

STANDARD EXPERIMENTAL METHOD

- Single Λ polarization is measured via $\Lambda^0 \to p \pi^+$ decay channel

- In Λ rest frame, protons are emitted preferentially in direction of Λ spin
- The distribution of protons in Λ 's rest frame is then given by:

$$\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} = 1 + \alpha P_{\Lambda}\cos(\theta^*)$$

- P_{Λ} is the Λ polarization
- $\Lambda^0: \alpha_+ = 0.732 \pm 0.014$, $\overline{\Lambda^0}: \alpha_- = -0.758 \pm 0.012$
- \hat{n} is normal vector to the production plane
- Angle $(\theta^*, \text{ or } \theta_p)$ is measured between \hat{n} and momentum of proton (\vec{p}_{Λ}) in Λ 's rest frame

OVERVIEW OF A POLARIZATION MEASUREMENTS

0.08

0.06

0.02

-0.04

-0.06

-0.08 -0.1

0 -0.02

0.04 0.2<z, <0.3

0.5

1.5

0.5

Polarization

- Current single Λ hyperon polarization results indicate the importance of the final state effects in Λ hyperon polarization
 - No significant dependence on collision system or energy, polarization of the beams
 - Observed in e⁺e⁻ collisions with no quarks or gluons in initial state
- Is there an initial state effect that cannot be accessed via single Λ hyperon polarization measurement?

MOTIVATION FOR A PAIR SPIN CORRELATIONS

- New, alternative approach is to measure spin correlations of $\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, and $\overline{\Lambda\Lambda}$ pairs
 - New choice of reference direction for polarization measurement spin direction of a different Λ ($\overline{\Lambda}$) in the same event
- Where could correlation of spins of $\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, or $\overline{\Lambda\overline{\Lambda}}$ pairs come from in high energy collisions?
 - Initial state (IS, t') parton spin correlations? Final state (FS, t₀) effects, as fragmentation or hadronization?
 - FS effects should not generate a spin-spin correlation
 - Polarization is generated at time t' at two independent places in space
- Any non-zero signal for spin-spin correlation would indicate an IS contribution to the Λ hyperon polarization
 - Would be a new observation as current single Λ polarization results indicate only importance of FS effects

NEW EXPERIMENTAL METHOD

- Find $\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, or $\overline{\Lambda\overline{\Lambda}}$ pair(s) in one event
 - Decay channel $\Lambda^0 \to p\pi^+$ and charge conjugate
- Boost (anti-)proton from decay of the corresponding Λ $(\overline{\Lambda})$ to rest frame of its mother
 - Proton momenta in mother rest frame: \hat{a} , \hat{b}
- Measure angle θ^* between the two **boosted protons**
- The distribution of pair angle is given by:

 $\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^*)} = 1 + \alpha_1 \alpha_2 P_{\Lambda\Lambda} \cos(\theta^*)$

- A non-zero $P_{\Lambda\Lambda}$ would indicate spin correlation between the pair

W. Gong, et al.: Phys.Rev.D 106 (2022) 3, L031501

∧ SPIN-SPIN IN p+p COLLISIONS FROM PYTHIA

- A hyperon spin-spin correlations in p+p collisions at $\sqrt{s} = 200$ GeV from PYTHIA 8.3
- Simulation used for evaluation of acceptance correction for analysis of Λ hyperon spin-spin correlations in p+p collisions at STAR
 - Can be used to estimate what will be needed at ePIC
- No expected signal for $P_{\Lambda\Lambda}$ from PYTHIA
 - $|y_{\Lambda}| < 1$, $0.5 < p_T < 5 \text{ GeV}/c$, no additional cuts

∧ SPIN-SPIN IN p+p COLLISIONS FROM PYTHIA

- A hyperon spin-spin correlations in p+p collisions at $\sqrt{s} = 200$ GeV from PYTHIA 8.3
- Single Λ ($\overline{\Lambda}$) selection
 - $|y_{\Lambda}| < 1, 0.5 < p_T < 5 \text{ GeV}/c$, Decay length: 2 < L < 25 cm
- Daughter selection (same for both)
 - $|\eta| < 1, p_T > 0.15 \text{ GeV}/c$
- Significant acceptance effect for $\Lambda\overline{\Lambda}$ pairs

A DECAY DAUGHTER KINEMATICS

۲

٣

- Origin of the acceptance effect is mainly from soft decay pions falling outside $|\eta| < 1$ for low $p_T \Lambda$ with $|y_\Lambda| < 1$
- Small effect for protons
- Can utilize large η acceptance of ePIC detector
 - Small acceptance effect
 - Access to large x_F
 - Possible to do long range spin-spin correlations
 - Long range η correlation (2 < $|\Delta \eta|$ < 7) vs. only short range η correlation e.g. at STAR ($|\Delta \eta|$ < 2)

OUTLOOK

- Ongoing analysis of Λ hyperon spin-spin correlations in p+p collisions at $\sqrt{s} = 200$ and 510 GeV measured by the STAR experiment
- Goal is to perform the same analysis within the ePIC simulation framework
- Key steps:
 - Generate e+p sample using PYTHIA 8.3 and pass it through ePIC
 - Analyze produced MC sample using the same experimental method developed for the STAR analysis
 - Estimate e.g. reconstruction efficiency of $\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, and $\overline{\Lambda\overline{\Lambda}}$ pairs and expected precision of $P_{\Lambda_1\Lambda_2}$
- Current status:
 - Have base for the PYTHIA simulation
 - Need to make some changes to produce output which can be used with ePIC simulation framework

07/24/202

THANK YOU FOR ATTENTION

BACKUP

07/24/2023

ACCEPTANCE EFFECT CORRECTION

- The acceptance effect can be corrected using mixed event (ME) $\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, or $\overline{\Lambda\Lambda}$ pairs
- ME has to be re-weighted to match kinematics of true MC pairs
 - Mainly issue for $\Lambda\overline{\Lambda}$ as those are highly correlated in η and ϕ due to IS kinematic correlation of $s\overline{s}$ pair
 - Here done using $\Delta \eta$ vs. $\Delta \phi$ vs. Δp_T distribution (Δ) of $\Lambda \overline{\Lambda}$, $\Lambda \Lambda$, and $\overline{\Lambda \overline{\Lambda}}$ pairs, $w = \Delta_{MC} / \Delta_{ME}$
 - Not perfect description of acceptance effect have to improve weight calculation
- Red distribution for true MC $\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, and $\overline{\Lambda\Lambda}$ pairs (from Slide 9), Blue ME

ACCEPTANCE EFFECT CORRECTION

- The acceptance effect can be corrected using mixed event (ME) $\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, or $\overline{\Lambda\Lambda}$ pairs
- ME has to be re-weighted to match kinematics of true MC pairs
 - Mainly issue for $\Lambda\overline{\Lambda}$ as those are highly correlated in η and ϕ due to IS kinematic correlation of $s\overline{s}$ pair
 - Here done using $\Delta \eta$ vs. $\Delta \phi$ vs. Δp_T distribution (Δ) of $\Lambda \overline{\Lambda}$, $\Lambda \Lambda$, and $\overline{\Lambda \overline{\Lambda}}$ pairs, $w = \Delta_{MC} / \Delta_{ME}$
 - Not perfect description of acceptance effect have to improve weight calculation
- Red distribution for true MC $\Lambda\overline{\Lambda}$, $\Lambda\Lambda$, and $\overline{\Lambda\overline{\Lambda}}$ pairs after ME correction

