Performance and Calibration of the ePIC Barrel HCal

Derek Anderson Iowa State University For the ePIC Collaboration

EP(C) S

....

ATF

Overview | introduction

- \circ In barrel region ($|\eta| < 1$), jets are relatively soft
 - Tracker provides best momentum determination
 - But hadronic calorimeter would provide measurement of h^0
- ∴ The Barrel Hadronic Calorimter (BHCal) will serve several roles at ePIC
 - a) Precise jet energy reconstruction
 - b) Additional determination of e^- kinematics
 - c) Solenoid flux return
 - d) Possible μ^{\pm} identification
- **Right:** schematic diagram of a typical particle experiment

Overview | the sPHENIX Barrel Hadronic Calorimeter

• ePIC will utilize the (outer) sPHENIX BHCal

- Consists of alternating steel and scintillating tile (+ WLS fibers)
 - $|\eta| < 1.1$, 2π coverage
 - > 48 towers/sector, 32 sectors
 - > 5 tiles/tower
 - $\Delta\eta \times \Delta\varphi \sim 0.1 \times 0.1$
 - Uses SiPM readouts
 - > 1536 channels
- sPHENIX gangs each signal from tile into 1 preamp per tower
 - ∽ ePIC will read out each tile using HGCROCs
 - (same chip as LFHCal)

Overview | implementation & plans for ePIC

- BHCal implemented in DD4hep by John Lajoie
 - Left: reconstructed energies in BHCal for single π^-
- Right: calculated resolutions from ePIC simulation (black circles) vs. sPHENIX test beam data (purple stars)

Calibration

- Energy measured by BHCal degraded for several reasons
 - Inefficiencies in clustering
 - Fluctuations in hadronic and EM parts of shower
 - Energy loss in inactive material
 - Loss due to nuclear-binding energies
 - Etc.
- ∴ Measured energy has to be calibrated!
- **Right:** energy of leading BHCal cluster for single
 - π^- events with full ePIC simulation
 - More on tile vs. tower clusters in following slides

Calibration | strategy

- Start at EM Scale:
 - EM part of shower corrected for
 - > i.e. Sampling fraction applied
 - Things like nuclear binding energy still need to be corrected for
 - Good target for Maching Learning!
- Used TMVA:
 - Trained on single particle events
 - Regression analysis particle energy as target
 - (More details in backup)

epic

Calibration | output

- Left: uncalibrated energy of lead BHCal clusters in single π^- events
 - Right: calibrated energy
 - $^{\circ}$ i.e. particle energy in this scenario

- Calibrated energies still show significant tails
 - Under investigation now...
 - One source could be (unwanted) cluster splitting?

Calibration | using tiles rather than towers

- How does using tiles vs. towers as readout impact resolution?
 - Left: calculated linearity
 - Right: calculated resolution

- Tower-based cluster resolution a little better than tile-based using this model
 - Under investigation now...

Performance | neutrons

- Now exploring performance of BHCal
 - Extending calibration studies to include other particles such as neutrons
 - ↔ How much h⁰ energy makes it to the BHCal?
- Raw lead cluster energies from BECal (left) and BHCal (right) for single neutrons

Performance | neutrons

 $E_{nar} = 1 \text{ GeV}$

 $E_{par} = 2 \text{ GeV}$

▼ E_{par} = 3 GeV

 \Box E_{par} = 4 GeV

 \odot E_{par} = 7 GeV

 \triangle E_{par} = 10 GeV

25

30

E_{par} = 5 GeV

0

. ePIC simulation [23.06.1] With BHCal ePIC simulation [23.06.1] With No BHCal single neutrons, $\theta \in (45^{\circ}, 135^{\circ})$ \bigcirc $E_{par} = 1 \text{ GeV}$ single neutrons, $\theta \in (45^{\circ}, 135^{\circ})$ E_{par} = 2 GeV Imaging configuration Imaging configuration E_{par} = 3 GeV \Box E_{par} = 4 GeV ≠ E_{par} = 5 GeV arbitrary units arbitrary units \bigcirc E_{par} = 7 GeV E_{par} = 10 GeV 10^{-3} 10 10 10 10 15 20 25 30 10 15 E_{par} [GeV] E_{par}^{reco} [GeV]

- First attempts at calibrating neutrons: 0
 - **Left:** calibration with BHCal info
 - **Right:** calibration without BHCal info
 - How does BHCal impact measurement of neutral energy?
- Needs work!
 - Cluster splitting (see backup) could be negatively impacting calibration

20

Summary & Next Steps

Summary

- The BHCal will be a valuable part of jet measurements at ePIC
- Performance and calibration studies are early, but off the ground!

Calibration Studies

- Questions to answer:
 - > How do individual BECal layers affect π^- calibration?
 - > How does calibration vary with η/ϕ ?
- Improve calibration model
 - > Hyperparameter scan
 - > Extend ML model to split clusters?
- Integrate workflow into ElCrecon

Performance Studies

- Continue studying neutron response
- Study response to μ^{\pm}
- Study BHCal impact on JES in realistic
 DIS events
- Implementation of benchmarks

Thanks!

EPIC STATE

m

METROPOL

Backup | tile and SiPM/chip information

Tiles

- Scintillating tiles manufactured by Uniplast
 - sPHENIX integrated into simulations detailed cosmic ray response maps from MEPHI
 - ∽ Uruguyan telescope
- Not expecting significant radiation damage to tiles
 - > But will replace SiPMs and readout
 - > Will need to remove tiles
 - Could remeasure cosmics

Chips

- Plan to piggy-back on HGCROC development for LFHCal
- BHCal Designed for 40K 15 μ m pixels

Backup | TMVA parameters

Parameters

- Regression analysis
- Trained on 1000 events
- 3 methods (all out-of-the-box):
 - a) Linear Discriminant (shown)
 - b) MLP (neural network)
 - c) Boosted Decision Tree

Training Variables

- Energy of leading BHCal and BEMC clusters
- Eta, phi of leading BHCal and BEMC clusters
- No. of hits in lead BHCal and BEMC clusters
- Sum of energy in imaging and SciFi layers
- > To-Do: add in individual imaging layers

Target

particle energy

Backup | dynamic range

- **Right:** distribution of visible energy deposited in BHCal scintillating tiles in DIS events
 - 18x275 GeV, $Q^2 > 1$ (10K evt.s)
 - Distributions binned in η
- How does this compare to sPHENIX?
 - sPHENIX had 50 GeV total energy/tower
 - \Rightarrow 300 MeV/tile (correcting for sampling frac.)
 - sPHENIX sees ~16000 pixels/GeV of visible energy
 - \Rightarrow ~960 SiPM pixels firing per 300 MeV
 - \Rightarrow Or about 96 firing for a 1 GeV μ (MIP)
 - ∴ Want a range of 20 ~ 10K pixels for ePIC
- Using specs for Hamamatsu S12572-O15P-02 (sPHENIX) and S14160-3015PS (ePIC):
 - Single pixel charge output is 52 fC for ePIC
 - (24 fC for sPHENIX)
- In good shape to read out individual tiles with HGCROCs being used for LFHCal will!
 - ∽ All calculations by John LaJoie

Backup | cluster splitting in neutrons

- Ratio of lead BECal (left) and BHCal clusters (right) energies to sum of energy in BECal, BHCal respectively
 - Note: y-axis ranges differ
 - Pretty significant rate of (unwanted) cluster splitting!