Observables for scattering on targets with any spin

Frank Vera (fveraveg@fiu.edu)
2023 Early Career Workshop EICUG

July 22, 2023

In collaboration with Wim Cosyn

Brookhaven
National Laboratory

Motivation

Matrix elements for Operators of composite particles with arbitrary spin

- Covariant decomposition of matrix element in independent non-perturbative objects
e.g. one-photon-exch.: $\left\langle p^{\prime}, s^{\prime}\right| j^{\mu}|p, s\rangle=\bar{u}_{\left(p^{\prime}, s^{\prime}\right)} \Gamma_{\left(p^{\prime}, p\right)}^{\mu} u_{(p, s)} \underset{\text { spin } 1 / 2}{\longrightarrow} \bar{u}_{\left(p^{\prime}, s^{\prime}\right)}\left[F_{1\left(t^{2}\right)} \gamma^{\mu}-F_{2\left(t^{2}\right)} \frac{i}{2 m} \sigma^{\mu \nu} q_{\nu}\right] u_{(p, s)}$

Spin-j fields embedded in objects with $>2 j+1$ components

- Polarization four vector (ε) for spin $1 \rightarrow p_{\mu} \epsilon^{\mu}(p, s)=0$
- Rarita Schwinger for spin $3 / 2 \rightarrow \gamma^{\mu} \psi_{\mu}(p, s)=0$
- Need for constraints, subsidiary conditions

Use $(2 j+1)$-component spinors

- Via SL(2,C) fundamental rep tensor products [Zwanziger 60s, Polyzou '18]
- Weinberg's construction [64-65] (not yet applied in this context)

Motivation

Advantages of Weinberg's construction

- Systematic approach, e.g., for any spin j
- Covariant "multipole" physical interpretation
- For parity conserving interactions a generalized Dirac algebra is obtained
- "Basic" construction and implementation. From $\mathrm{su}(2) \rightarrow \mathrm{su}(\mathrm{N})$ algebra
- Easy to switch between forms of dynamics (instant form, light front)
- Use only exact degrees of freedom (chiral reps), no need for constraints
- No kinematic singularities (improved analyticity properties of operators)

Outline

Outline

- Review of $\xrightarrow{\text { Flying over }}$ Weinberg's formalism
- Building uponWeinberg's formalism: Bilinear Calculus
- Simplification (I): Algorithm for Construction of t-tensors
- Simplification (II): Algebra of t-tensors

See in Back-up slides

- Examples: Spin $1 / 2$, Spin 1
- Different forms of dynamics: Canonical (Instant Form), Light Front

Introduction: Review of Weinberg's formalism

Weinberg's "Feynman rules for Any Spin" [1964]

- Algebra for Generators of the Lorentz group

$$
\left[\mathbb{J}_{l}, \mathbb{J}_{m}\right]=i \epsilon_{l m n} \mathbb{J}_{n}, \quad\left[\mathbb{J}_{l}, \mathbb{K}_{m}\right]=i \epsilon_{l m n} \mathbb{K}_{n}, \quad\left[\mathbb{K}_{l}, \mathbb{K}_{m}\right]=-i \epsilon_{l m n} \mathbb{J}_{n}
$$

- Two independent $\operatorname{su}(2)$ subalgebras $\rightarrow \operatorname{irreps}\left(j_{A}, j_{B}\right)$

$$
\begin{gathered}
\mathbb{A}_{m}=\frac{1}{2}\left(\mathbb{J}_{m}+i \mathbb{K}_{m}\right) \quad, \quad \mathbb{B}_{m}=\frac{1}{2}\left(\mathbb{J}_{m}-i \mathbb{K}_{m}\right) \\
{\left[\mathbb{A}_{l}, \mathbb{A}_{m}\right]=i \epsilon_{l m n} \mathbb{A}_{n}, \quad\left[\mathbb{B}_{l}, \mathbb{B}_{m}\right]=i \epsilon_{l m n} \mathbb{B}_{n}, \quad\left[\mathbb{A}_{l}, \mathbb{B}_{m}\right]=0}
\end{gathered}
$$

- Simplest irreps that contain spin- $j \rightarrow(2 j+1$ components $)$
- Right-handed $(j, 0): \mathbb{K}_{m} \rightarrow-i \mathbb{J}_{m}$
- Left-handed $(0, j): \mathbb{K}_{m} \rightarrow+i \mathbb{J}_{m}$

Introduction: Review of Weinberg's formalism

Causal chiral fields (massive, left- right-handed)

- Lorentz invariant S-matrix using a Hamiltonian density built up from causal fields

$$
U_{[\Lambda, a]} \psi_{\sigma(x)} U_{[\Lambda, a]}^{-1}=\sum_{\sigma^{\prime}}\left(D_{\left[\Lambda^{-1}\right]}^{(j)}\right)_{\sigma \sigma^{\prime}} \psi_{\sigma^{\prime}(\Lambda x+a)}
$$

- No EoM for chiral fields (only obey KG eq.)
- Spinors appearing in the fields (not invariants, depend on choice boost)

$$
D_{[L(p)]}^{(j)}=e^{-\hat{p} \cdot \vec{J}^{(j)} \theta}
$$

Canonical \rightarrow

$$
\bar{D}_{[L(p)]}^{(j)}=e^{+\hat{p} \cdot \vec{J}^{(j)} \theta}
$$

Introduction: Review of Weinberg's formalism

Propagator of chiral fields

- Numerator (invariant)

$$
\begin{aligned}
& \Pi_{\sigma \sigma^{\prime}}^{(j)}(\vec{p}, \omega)=m^{2 j} D_{\sigma \sigma^{\prime}}^{(j)}[L(\vec{p})]\left(D_{\sigma^{\prime} \sigma^{\prime \prime}}^{(j)}[L(\vec{p})]\right)^{\dagger}=m^{2 j}\left(e^{-2 \hat{p} \cdot \vec{J}^{(j)} \theta}\right)_{\sigma \sigma^{\prime}} \\
& \bar{\Pi}_{\sigma \sigma^{\prime}}^{(j)}(\vec{p}, \omega)=m^{2 j} \bar{D}_{\sigma \sigma^{\prime}}^{(j)}[L(\vec{p})]\left(\bar{D}_{\sigma^{\prime} \sigma^{\prime \prime}}^{(j)}[L(\vec{p})]\right)^{\dagger}=m^{2 j}\left(e^{2 \hat{p} \cdot \vec{J}^{(j)} \theta}\right)_{\sigma \sigma^{\prime}}
\end{aligned}
$$

- Introduction of 2 j -rank t-tensors

$$
\Pi_{\sigma \sigma^{\prime}}^{(j)}(\vec{p}, \omega)=t_{\sigma \sigma^{\prime}}^{\mu_{1} \mu_{2} \ldots \mu_{2 j}} p_{\mu_{1}} p_{\mu_{2}} \ldots p_{\mu_{2 j}}
$$

totally symmetric
covariantly traceless

- Central roll of t-tensors

$$
\begin{aligned}
& D_{[L(p)]}^{(j)}=t^{\mu_{1} \mu_{2} \ldots \mu_{2 j}} \tilde{p}_{\mu_{1}} \tilde{p}_{\mu_{2}} \ldots \tilde{p}_{\mu_{2 j}} \\
& \bar{D}_{[L(p)]}^{(j)}=\bar{t}^{\mu_{1} \mu_{2} \ldots \mu_{2 j}} \tilde{p}_{\mu_{1}} \tilde{p}_{\mu_{2}} \ldots \tilde{p}_{\mu_{2 j}}
\end{aligned}
$$

Instant form dynamics (Canonical) \tilde{p}^{μ} not four-vectors

$$
\tilde{p}^{\mu} \mathrm{C}=\sqrt{\frac{1}{2 m\left(m+p^{0}\right)}}\left(p^{0}+m, \vec{p}\right)
$$

Introduction: Review of Weinberg's formalism

Bi-Spinors (direct sum representation $(j, 0) \oplus(0, j))$

- For Parity conserving interactions the direct sum of both chiral representations is used (like the spin $1 / 2$ case)
- Boosts and bispinor (Weyl rep.)

$$
\begin{gathered}
u_{(p, s)}^{(j)}=\mathcal{D}_{\left[L_{p}\right]}^{(j)} \stackrel{\circ}{u}_{s}^{(j)}=\left(\begin{array}{cc}
D_{\left[L_{p}\right]}^{(j)} & 0 \\
0 & \bar{D}_{[L p]}^{(j)}
\end{array}\right) \stackrel{\circ}{u_{s}^{(j)}}=\left(\begin{array}{cc}
\Pi_{(\tilde{p})}^{(j)} & 0 \\
0 & \bar{\Pi}_{(\tilde{p})}^{(j)}
\end{array}\right) \stackrel{\circ}{u}_{s}^{(j)} \\
\stackrel{\circ}{u}_{s}^{(j)}=\left(\begin{array}{c}
\circ \\
\stackrel{\circ}{\phi}_{s}^{(j)} \\
\circ_{\phi}^{(j)}
\end{array}\right) \quad, \quad{\stackrel{\circ}{\phi_{s}^{(j)}}=m^{j}\left(\begin{array}{c}
\vdots \\
1 \\
\vdots
\end{array}\right) \quad \text { (1 in the s-th position) }}^{l}
\end{gathered}
$$

- Adjoint bispinor $\left(\mathcal{D}_{[\Lambda]}^{\dagger}=\beta \mathcal{D}_{[\Lambda]}^{-1} \beta\right)$

$$
\bar{u}_{(p, s)}^{(j)}=u_{(p, s)}^{(j)}{ }^{\dagger} \beta=\stackrel{\circ}{u}_{s}^{(j) \dagger} \mathcal{D}_{\left[L_{p}\right]}^{(j)}{ }^{\dagger} \beta=\stackrel{\circ}{u}_{s}^{(j) \dagger} \dagger\left(\begin{array}{cc}
0 & \Pi_{(\bar{p})}^{(j)} \\
\bar{\Pi}_{(\tilde{p})}^{(j)} & 0
\end{array}\right) \quad ; \quad \beta=\left(\begin{array}{cc}
0 & \mathbf{1}^{(j)} \\
\mathbf{1}^{(j)} & 0
\end{array}\right)
$$

Introduction: Review of Weinberg's formalism

Dirac Eq. \& Gamma matrices

- The bispinor satisfy the Dirac eq.

$$
\begin{aligned}
& \left(\gamma^{\mu_{1} \cdots \mu_{2 j}} p_{\mu_{1}} \cdots p_{\mu_{2 j}}-m^{2 j}\right) u_{(p, s)}^{(j)}=0 \\
& \bar{u}_{(p, s)}^{(j)}\left(\gamma^{\mu_{1} \cdots \mu_{2 j}} p_{\mu_{1}} \cdots p_{\mu_{2 j}}-m^{2 j}\right)=0
\end{aligned}
$$

- The gamma matrices appear from

$$
\begin{gathered}
\left(\begin{array}{cc}
D_{\left[L_{p}\right]}^{(j)} & 0 \\
0 & \bar{D}_{[L p]}^{(j)}
\end{array}\right)\left(\begin{array}{cc}
0 & D_{\left[L_{p}\right]}^{(j)} \\
\bar{D}_{[L p]}^{(j)} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \left(\Pi_{(\tilde{p})}^{(j)}\right)^{2} \\
\left(\bar{\Pi}_{(\tilde{p})}^{(j)}\right)^{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \Pi_{(p)}^{(j)} \\
\bar{\Pi}_{(p)}^{(j)} & 0
\end{array}\right)=\gamma^{\mu_{1} \cdots \mu_{2 j} p_{\mu_{1}} \cdots p_{\mu_{2 j}}} \\
\gamma^{\mu_{1} \cdots \mu_{2 j}}=\left(\begin{array}{cc}
0 & t^{\mu_{1} \cdots \mu_{2 j}} \\
\bar{t}^{\mu_{1} \cdots \mu_{2 j}} & 0
\end{array}\right) ; \beta=\gamma^{0 \cdots 0} ; \quad \gamma_{5}=\left(\begin{array}{cc}
-\mathbf{1}^{(j)} & 0 \\
0 & \mathbf{1}^{(j)}
\end{array}\right)
\end{gathered}
$$

Dirac Bilinear Calculus Generalization

Generalized Bilinears

- $\bar{u}_{\left(p_{f}, s_{f}\right)}^{(j)} \Gamma u_{\left(p_{i}, s_{i}\right)}^{(j)}=\frac{1}{\left(m_{f} m_{i}\right)^{2 j}} \ddot{u}_{s_{f}}^{(j) \dagger}\left(\begin{array}{cc}0 & t^{\beta_{1} \cdots} \tilde{p}_{\beta_{1} \ldots}^{f} \\ \bar{t}^{\beta_{1} \cdots\left(\tilde{p}_{\left.\beta_{1} \ldots\right)^{\prime}}^{f}\right.} \quad 0\end{array}\right) \Gamma\left(\begin{array}{cc}t^{\alpha_{1} \cdots} \tilde{p}_{\beta_{1} \ldots}^{i} & 0 \\ 0 & \bar{t}^{\bar{\alpha}_{1} \cdots\left(\tilde{p}_{\alpha_{1} \ldots}^{i} \ldots\right)^{*}}\end{array}\right) \dot{u}_{s_{i}}^{(j)}$
- Dirac basis: $\quad \Gamma=\mathbf{1}(1), \gamma^{\mu_{1} \ldots \mu_{2 j}}(2 j+1)^{2}, \quad \gamma_{5} \gamma^{\mu_{1} \ldots \mu_{2 j}}(2 j+1)^{2}, \quad \gamma_{5}(1)$

$$
4(2 j+1)^{2} \quad\left[\gamma^{\mu_{1} \ldots \mu_{2 j}}, \gamma^{\nu_{1} \ldots \nu_{2 j}}\right] \quad 2 \sum_{n=1,3, \ldots}^{2 j}(2 n+1)
$$

ind. elements

$$
\left\{\gamma^{\mu_{1} \cdots \mu_{2 j}}, \gamma^{\nu_{1} \cdots \nu_{2 j}}\right\}_{\text {traceless }} 2 \sum_{n=0,2, \ldots}^{2 j}(2 n+1)
$$

Examples

- Spin-1/2 (16): $\mathbf{1}(1), \gamma^{\mu}(4),\left[\gamma^{\mu}, \gamma^{\nu}\right](6),\left(\left\{\gamma^{\mu}, \gamma^{\nu}\right\}-2 g^{\mu \nu}\right)(0), \gamma^{\mu} \gamma_{5}(4), \gamma_{5}(1)$
- Spin-1 (36): $\mathbf{1}(1), \gamma^{\mu \nu}(9),\left[\gamma^{\mu_{1} \mu_{2}}, \gamma^{\mu_{3} \mu_{4}}\right](6),\left\{\gamma^{\mu_{1} \mu_{2}}, \gamma^{\mu_{3} \mu_{4}}\right\}_{\text {trless }}(10), \gamma^{\mu \nu} \gamma_{5}(9), \gamma_{5}(1)$
- Matrix elements of Operators, covariant Density matrices, Amplitudes, ...

Dirac Bilinear Calculus Generalization: On-Shell Identities

Generalized Gordon Identities

- Dirac Equation $\left(\gamma^{\mu_{1} \ldots \mu_{2 j}} p_{\mu_{1}} \ldots p_{\mu_{2 j}}-m^{2 j}\right) u_{p}^{s}=0$ leads to On-Shell (Gordon) identities

$$
\begin{aligned}
u_{p^{\prime}}^{s^{\prime}}(\Gamma) u_{p}^{s} & =\frac{1}{2 \bar{m}^{2 j}} u_{p^{\prime}}^{s^{\prime}}\left(\left\{\not p^{(j)}, \Gamma\right\}+\frac{1}{2}\left[\phi^{(j)}, \Gamma\right]\right) u_{p}^{s} \\
0 & =u_{p^{\prime}}^{s^{\prime}}\left(\frac{1}{2}\left\{\phi^{(j)}, \Gamma\right\}+\left[\not P^{(j)}, \Gamma\right]\right) u_{p}^{s}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\bar{m}^{2 j} & =\frac{1}{2}\left(m^{\prime 2 j}+m^{2 j}\right) \\
P_{\mu_{1} \ldots \mu_{2 j}} & =\frac{\bar{m}^{2 j}}{2}\left(\frac{p_{\mu_{1}}^{\prime} \ldots p_{\mu_{2 j}}^{\prime}}{m^{\prime 2 j}}+\frac{p_{\mu_{1}} \ldots p_{\mu_{2 j}}}{m^{2 j}}\right) \\
\Delta_{\mu_{1} \ldots \mu_{2 j}} & =\bar{m}^{2 j}\left(\frac{p_{\mu_{1}}^{\prime} \ldots p_{\mu_{2 j}}^{\prime}}{m^{\prime 2 j}}-\frac{p_{\mu_{1}} \ldots p_{\mu_{2 j}}}{m^{2 j}}\right) & \rightarrow & \Delta^{\mu_{1} \ldots \mu_{2 j}}=P_{\left(p, p^{\prime}\right)}^{\mu_{1} \ldots \mu_{2 j}}\left(p^{\prime}, p\right)=-\Delta^{\mu_{1} \ldots \mu_{2 j}}\left(p, p^{\prime}\right) \\
\end{array}
$$

- Gordon identity separates general bilinears into convection and magnetization currents. Useful to reduce independent Dirac structures

Simplification (I): Algorithm for construction of t-tensors

Insightful construction for the t-tensors

- The 0 -th degree polynomial in the J 's is always $t^{0 \ldots 0}=\mathbf{1}$
- The linear polynomials are the Rotation Group Generators

$$
t^{0 \ldots i \ldots 0}=\frac{2}{2 j} J_{i}=\frac{1}{j} J_{i}
$$

- From pairwise symmetrizations of the rotation generators

$$
\begin{aligned}
t^{0 \ldots m \ldots 0 \ldots n \ldots 0}=t^{m n 0 \ldots 0}= & \frac{1}{\frac{(2 j)!}{2!(2 j-2)!}}\left(\left\{J_{m}, J_{n}\right\}-\frac{1}{3} \delta_{m n} \sum_{r=1}^{3}\left\{J_{r}, J_{r}\right\}\right)+\frac{1}{3} t^{0 \ldots 0} \delta_{m n} \\
& =\frac{j}{(2 j-1)}\left(\left\{t^{m 0 \ldots 0}, t^{n 0 \ldots 0}\right\}-\frac{1}{j} \delta_{m n} t^{0 \ldots 0}\right)
\end{aligned}
$$

Simplification (I): Algorithm for construction of t-tensors

- Continues for higher orders
- Matrices have more and more off-diagonal elements

$$
\left.\begin{array}{rl}
t^{l m n 0 \ldots 0}=t^{0 \ldots 0 l 0 \ldots 0 m 0 \ldots 0 n 0 \ldots 0}= & \frac{j}{(2 j-2)} \frac{1}{3}(
\end{array}\left\{t^{l 0 \ldots 0}, t^{m n 0 \ldots 0}\right\}+\left\{t^{m 0 \ldots 0}, t^{n l 0 \ldots 0}\right\}+\left\{t^{n 0 \ldots 0}, t^{l m 0 \ldots 0}\right\}\right)
$$

- Construction stops after j steps (Cayley-Hamilton) $(J-s)(J-s-1) \ldots(J+s)=0$
- t-tensors contain a basis for $\operatorname{su}(\mathrm{N}=2 \mathrm{j}+1) \quad$ (Universal Enveloping Algebra)
- A basis to decompose operators with physical interpretation for each term. Multipole expansion \rightarrow mono-, di-, quadrupole, ...

$$
\hat{O}=\operatorname{Tr}[O] \mathbf{1}+\operatorname{Tr}\left[O J_{i}\right] J_{i}+\operatorname{Tr}\left[O J_{i j}\right] J_{i j}+\cdots=\langle O\rangle \mathbf{1}+O_{i} J_{i}+O_{i j} J_{i j}+\cdots
$$

t^{μ}-tensor for Spin $1 / 2$

0 -th order terms in $J_{i}^{(1 / 2)}: t^{0}=1$

Linear terms in $J_{i}^{(1 / 2)}: \quad t^{i}=\frac{1}{1 / 2} J_{i}^{(1 / 2)}=\sigma_{i}$ (Pauli matrices)

$$
J_{1}^{(1 / 2)}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), J_{2}^{(1 / 2)}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad, J_{3}^{(1 / 2)}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Quadratic terms in $J_{i}^{(1 / 2)}$

$$
\left(J^{(1 / 2)}-\frac{1}{2} \mathbf{1}\right)\left(J^{(1 / 2)}+\frac{1}{2} \mathbf{1}\right)=0 \Longrightarrow\left(J^{(1 / 2)}\right)^{2}=c_{0} \mathbf{1}+c_{2} J^{(1 / 2)}
$$

$t^{\mu \nu}$-tensor for Spin 1

$\mathbf{0}$-th order terms in $J_{i}^{(1)}: t^{00}=\mathbf{1}$
Linear terms in $J_{i}^{(1)}: \quad t^{0 i}=J_{i}^{(1)}$

$$
t^{01}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad, \quad t^{02}=\frac{i}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \quad, t^{03}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Quadratic terms in $J_{i}^{(1)}: \quad t^{i j}=\left\{J_{i}^{(1)}, J_{j}^{(1)}\right\}-\mathbf{1} \delta_{i j}$

$$
\begin{gathered}
t^{11}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \quad, t^{22}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right), t^{33}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
t^{12}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \quad, t^{13}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & -1 \\
0 & -1 & 0
\end{array}\right) \quad, t^{23}=\frac{i}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
\end{gathered}
$$

Cubic terms in $J_{i}^{(1)}:\left(J^{(1)}-1\right)\left(J^{(1)}\right)\left(J^{(1)}+1\right)=0 \Longrightarrow\left(J^{(1)}\right)^{3}=c_{0} \mathbf{1}+c_{2} J^{(1)}+c_{3}\left(J^{(1)}\right)^{2}$

Simplification (II): Algebra of t-tensors

Reduction for Cubic Monomials

- Monomials always appear in bilinear calculus with an alternating "barring" pattern

$$
t^{\mu_{1} \cdots \mu_{2 j}} \bar{t}^{\nu_{1} \cdots \nu_{2 j}} t^{\rho_{1} \cdots \rho_{2 j}}=\frac{1}{[(2 j)!]^{2}} \underset{\left\{\nu_{1} \cdots \nu_{2 j}\right\}\left\{\rho_{1} \ldots \rho_{2 j}\right\}}{\mathcal{S}}\left(\overline{\mathcal{C}}^{\mu_{1} \nu_{1} \rho_{1} \beta_{1}} \overline{\mathcal{C}}^{\mu_{2} \nu_{2} \rho_{2} \beta_{2}} \cdots \overline{\mathcal{C}}^{\mu_{2 j} \nu_{2 j} \rho_{2 j} \beta_{2 j}}\right) t_{\beta_{1} \cdots \beta_{2 j}}
$$

- The coefficient tensors: $\quad \overline{\mathcal{C}}^{\mu \rho \alpha \beta}=g^{\mu \rho} g^{\alpha \beta}-g^{\mu \alpha} g^{\rho \beta}+g^{\mu \beta} g^{\rho \alpha}+i \epsilon^{\mu \rho \alpha \beta}$ (Invariant tensors)
- Compare with:

$$
\begin{aligned}
& \operatorname{Tr}\left\{\gamma^{\mu} \gamma^{\rho} \gamma^{\alpha} \gamma^{\beta}\right\}=4\left(g^{\mu \rho} g^{\alpha \beta}-g^{\mu \alpha} g^{\rho \beta}+g^{\mu \beta} g^{\rho \alpha}\right) \\
& \operatorname{Tr}\left\{\gamma^{\mu} \gamma^{\rho} \gamma^{\alpha} \gamma^{\beta} \gamma_{5}\right\}=4 i \varepsilon^{\mu \rho \alpha \beta}
\end{aligned}
$$

- Trading matrix multiplication by number multiplication

Simplification (II): Algebra of t-tensors

Reduction for Quadratic Monomials

- Monomials always appear in bilinear calculus with an alternating "barring" pattern $t^{\mu_{1} \cdots \mu_{2 j}} \bar{t}^{\nu_{1} \cdots \nu_{2 j}}\left(t^{\rho_{1} \cdots \rho_{2 j} j} \eta_{\rho_{1}} \cdots \eta_{\rho_{2 j} j}\right)=\frac{1}{(2 j)!}\left\{{\left.\sum \nu_{1} \cdots \nu_{2 j}\right\}}_{\mathcal{S}}\left(\overline{\mathcal{C}}^{\mu_{1} \nu_{1} \rho_{1} \beta_{1}} \eta_{\rho_{1}} \overline{\mathcal{C}}^{\mu_{2} \nu_{2} \rho_{2} \beta_{2}} \eta_{\rho_{2}} \cdots \overline{\mathcal{C}}^{\mu_{2 j} \nu_{2 j} \rho_{2 j} \beta_{2 j}} \eta_{\rho_{2 j}}\right) t_{\beta_{1} \cdots \beta_{2 j}}\right.$
- The condition $t^{\rho_{1} \cdots \rho_{2 j}} \eta_{\rho_{1}} \cdots \eta_{\rho_{2 j}}=\mathbf{1}_{(2 j+1) \times(2 j+1)}$ defines η_{ρ} in Lorentz coordinates $t^{0 \cdots 0}=\mathbf{1}$, thus $\eta^{\mu} \rightarrow \eta_{\mathrm{C}}^{\mu}=(1,0,0,0)$
- General result $\left(\overline{\mathcal{D}}_{(\eta)}^{\mu \rho \alpha} \equiv \overline{\mathcal{C}}^{\mu \rho \sigma \alpha} \eta_{\sigma}-g^{\mu \rho} \eta^{\alpha}=-g^{\rho \alpha} \eta^{\mu}+g^{\mu \alpha} \eta^{\rho}+i \epsilon^{\mu \rho \sigma \alpha} \eta_{\sigma}\right)$
$t^{\mu_{1} \cdots \mu_{2 j} \bar{t}^{\rho_{1} \cdots \rho_{2 j}}}=\frac{1}{(2 j)!} \mathcal{S \rho}^{\left(\rho_{1} \ldots \rho_{2 j}\right\}}[\sum_{n=0}^{2 j}(\prod_{l=1}^{n} \overline{\mathcal{D}}^{\mu_{l} \rho_{l} \alpha_{l}} \prod_{k=n+1}^{2 j} g^{\mu_{k} \rho_{k}} \eta^{\alpha_{k}}+\underbrace{\ldots}_{\text {choices for } l, k})] t_{\alpha_{1} \cdots \alpha_{2 j}}$
Covariant (sl(2,C)) Multipole expansion

Spin 1 Example: EM Current

Using spinor representation: $\left\langle p^{\prime}, s^{\prime}\right| j^{\mu}(0)|p, s\rangle={ }^{\circ} \dot{s}_{s^{\prime}}^{(1)} \Gamma_{\left(p^{\prime}, p\right)}^{\mu}{ }^{\circ} \dot{\phi}_{s}^{(1)}$

$$
\begin{array}{ll}
& m^{2} \Gamma_{\left(p^{\prime}, p\right)}^{\mu}=2 P^{\mu}\left[P^{2} \mathbf{1} G_{C}\left(Q^{2}\right)-\Delta^{\rho} \Delta^{\sigma}\left(t_{\rho \sigma}-\frac{1}{3} g_{\rho \sigma} \mathbf{1}\right) G_{Q}\left(Q^{2}\right)\right] \\
P=\frac{1}{2}\left(p^{\prime}+p\right) \\
\Delta=p^{\prime}-p \quad\left(\Delta^{2}=-Q^{2}\right) & -i \epsilon^{\mu \rho \sigma \lambda}\left[\Delta_{\rho} P_{\sigma}\left(t_{\lambda \nu}-\frac{1}{3} g_{\lambda \nu} \mathbf{1}\right) n_{t}^{\nu} G_{M}\left(Q^{2}\right)\right] \\
n_{t}^{\nu}=(1,0,0,0)
\end{array}
$$

Using polarization vectors:

$$
\begin{aligned}
&\left\langle p^{\prime}, s^{\prime}\right| j^{\mu}(0)|p, s\rangle=\varepsilon_{s^{\prime}}^{* \alpha}\left(p^{\prime}\right) \Gamma_{\alpha \beta}^{\mu}(P, \Delta) \varepsilon_{s}^{\beta}(p) \\
& \Gamma^{\mu \alpha \beta}= 2 P^{\mu}\left(\Pi^{\alpha \beta} G_{C}\left(Q^{2}\right)-\frac{\Delta^{\rho} \Delta^{\sigma}\left(\Sigma_{\rho \sigma}\right)^{\alpha \beta}}{2 m^{2}} \frac{P^{2}}{m^{2}} G_{Q}\left(Q^{2}\right)\right) \\
&-i \epsilon^{\mu \rho \sigma \lambda}\left(\frac{\Delta_{\rho} P_{\sigma}\left(\Sigma_{\lambda}\right)^{\alpha \beta}}{\sqrt{P^{2}}} G_{M}\left(Q^{2}\right)\right)
\end{aligned}
$$

Summary

- Weinberg's construction allows for an efficient and manifestly covariant calculation of currents for any spin
- Central (and multifaceted) role for the covariant t-tensors
- Simple algorithm. Only need to know the matrices for the Generators of rotations in the representation of interest.
- Covariant $s l(2, \mathrm{C})$-multipole basis for operators. more transparent physical interpretation
- Universality of the method for any spin. intuition on spin $1 / 2$ can be carried over to higher spin
- No need to work with explicit representations of spinors (Dirac matrices) Everything reduces to Lorentz covariant t-matrix algebra ($\mathcal{C}^{\mu \nu \rho \lambda}$, just numbers)

Summary

Many applications and extensions possible

- Local operators parameterizations: Generalized Form Factors (two independent four-vectors)
- Bilocal operators parameterizations (more than two independent four-vectors)
- Transition matrix elements
- Use in χ EFT's for high energy processes

Thanks!

Questions?

Backup Slides

Backup Slides

Properties of the t-tensors

Properties of the t-tensors

- Each $t^{\mu_{1} \ldots \mu_{2 j}}$ is a 2 j -rank tensor
- Symmetric and (covariantly) traceless $\quad g_{\mu_{k} \mu_{l}} t_{\sigma \sigma^{\prime}}^{\mu_{1} \ldots \mu_{k} \ldots \mu_{l} \ldots \mu_{2 j}}=0$
- Transform covariantly

$$
\left(D_{[\Lambda]}^{(j)}\right)_{\sigma \delta} t_{\delta \delta^{\prime}}^{\mu_{1} \ldots \mu_{2 j}}\left(D_{[\Lambda]}^{(j)}\right)_{\delta^{\prime} \sigma^{\prime}}^{\dagger}=\Lambda_{\nu_{1}}{ }^{\mu_{1}} \ldots \Lambda_{\nu_{2 j}}{ }^{\mu_{2 j}} t_{\sigma \sigma^{\prime}}^{\nu_{1} \ldots \nu_{2 j}}
$$

- Right chiral (t) and left chiral (\bar{t}) are related by charge conjugation

$$
\bar{t}_{\sigma \sigma^{\prime}}^{\mu_{1} \mu_{2} \ldots \mu_{2 j}}=(\pm) t_{\sigma \sigma^{\prime}}^{\mu_{1}^{\prime} \mu_{2}^{\prime} \ldots \mu_{2 j}^{\prime}}
$$

(+ for even (- for odd) spacelike indices)

Spin 1/2 Example: Spinors

Right Chiral Rep

- $t^{0}=\mathbf{1}, t^{i}=\sigma_{i}$
- t^{μ} Transform Covariantly: $D_{[\Lambda]}^{(1 / 2)} t^{\mu} D^{(1 / 2)}{ }_{[\Lambda]}^{\dagger}=\Lambda_{\rho}{ }^{\mu} t^{\rho}$
- Propagator (Lorentz invariant): $\quad \Pi^{(1 / 2)}(p)=t^{\mu} p_{\mu}=\left(\begin{array}{cc}E-p_{z} & -\left(p_{x}-i p_{y}\right) \\ -\left(p_{x}+i p_{y}\right) & E+p_{z}\end{array}\right)$
$p_{\mu}=\left(E_{p}, \vec{p}\right)$
- Boost/spinors (Canonical): $\quad D_{\mathrm{IF}}^{(1 / 2)}=t^{\mu} \tilde{p}_{\mu}^{\mathrm{C}}=\frac{1}{\sqrt{2 m\left(m+p_{0}\right)}}\left(\begin{array}{cc}m+p^{-} & -p_{\ell} \\ -p_{r} & m+p^{+}\end{array}\right)$ $\tilde{p}_{\mathrm{C}}^{\mu}=\sqrt{\frac{m}{2\left(m+p^{0}\right)}}\left(p^{0}+m, \vec{p}\right)$

Similarly for the Left Chiral Rep, only change is: $J_{i}^{(1 / 2)} \rightarrow \bar{J}^{\mu}=\left(1,-\vec{J}^{(1 / 2)}\right)$

Spin 1 Example: Spinors

Right Chiral Rep

- $t^{00}=\mathbf{1}, t^{0 i}=t^{i 0}=J_{i}^{(1)}, t^{i j}=\left\{J_{1}^{(1)}, J_{1}^{(1)}\right\}-\mathbf{1} \delta_{i j}$
- $t^{\mu \nu}$ Transform covariantly $D_{[\Lambda]}^{(1)} t^{\mu \nu} D^{(1)}{ }_{[\Lambda]}^{\dagger}=\Lambda_{\rho}{ }^{\mu} \Lambda_{\sigma}{ }^{\nu} t^{\rho \sigma}$
- Propagator $\left(p_{\mu}=\left(E_{p}, \vec{p}\right)\right): \quad \Pi^{(1)}(p)=t^{\mu \nu} p_{\mu} p_{\nu}=\left(\begin{array}{ccc}\left(p^{-}\right)^{2} & -\sqrt{2} p_{\ell} p^{-} & p_{\ell}^{2} \\ \sqrt{2} p_{r} p^{+} & p^{+} p^{-}+p_{T}^{2} & \sqrt{2} p_{\ell} p^{-} \\ p_{r}^{2} & \sqrt{2} p_{r} p^{-} & \left(p^{+}\right)^{2}\end{array}\right)$
- Boost/spinors $\left(t^{\mu \nu} \tilde{p}_{\mu} \tilde{p}_{\nu}\right)$

Canonical: $D_{\mathrm{IF}}^{(1)}=\frac{1}{2 m\left(m+p_{0}\right)}\left(\begin{array}{ccc}\left(m+p^{-}\right)^{2} & -\sqrt{2} p_{\ell}\left(m+p^{-}\right) & p_{\ell}^{2} \\ -\sqrt{2} p_{r}\left(m+p^{-}\right) & 2\left(m^{2}+m p_{0}+p_{\mathrm{T}}^{2}\right) & -\sqrt{2} p_{\ell}\left(m+p^{+}\right) \\ p_{r}^{2} & -\sqrt{2} p_{r}\left(m+p^{+}\right) & \left(m+p^{+}\right)^{2}\end{array}\right)$

$$
\tilde{p}_{\mathrm{C}}^{\mu}=\sqrt{\frac{m}{2\left(m+p^{0}\right)}}\left(p^{0}+m, \vec{p}\right)
$$

Similarly for the Left Chiral Rep, only change is: $J_{i}^{(1)} \rightarrow \bar{J}^{\mu}=\left(1,-\vec{J}^{(1)}\right)$

Canonical Space-Time Parameterization

Parameterizations (Foliations) of space-time \rightarrow Specify equal time surfaces
Canonical or Instant time: $\quad x^{0}=t$
[Wigner(1939)]

- Defined by rotationless boosts from rest: $\stackrel{\circ}{p}^{\mu}=(m, 0,0,0)$
to final momentum: $p^{\mu}=\left(E_{p}, \vec{p}\right)=\left(\sqrt{m^{2}+\vec{p}^{2}}, \vec{p}\right)$

$$
\Lambda^{\mathrm{IF}}=\exp (i \overrightarrow{\mathbb{K}} \cdot \vec{\phi})=\exp (i \phi \overrightarrow{\mathbb{K}} \cdot \hat{\phi})
$$

- Then, $p^{\mu}=(E, \vec{p})=\left(\Lambda^{\mathrm{IF}}\right)^{\mu}{ }_{\nu}{ }^{\circ}{ }^{\nu}$

implies, $\cosh (\phi)=\frac{E}{m}, \quad \hat{\phi}_{j} \sinh (\phi)=\frac{p_{j}}{m}$
Leading to the well known result: $\quad\left(\Lambda^{\mathrm{IF}}\right)^{\mu}{ }_{\nu}=\left(\begin{array}{cc}\frac{E}{m} & \frac{\vec{p}}{m} \\ \frac{p}{m} & \delta_{i j}+\frac{p_{i p_{j}}}{(E+m) m}\end{array}\right)$

Light-Front Space-Time Parameterization

Light Front time: $x^{+}=t+z$
$p^{+}=E_{p}+p_{z}, p^{-}=E_{p}-p_{z}$

- Defined by a longitudinal boost followed by a transverse boost

$$
\Lambda_{\text {def. }}^{\mathrm{LF}}=\exp \left[i \overrightarrow{\mathbb{G}} \cdot \overrightarrow{\mathrm{v}}_{\mathrm{T}}\right] \cdot \exp \left[i \mathbb{K}_{3} \eta\right]
$$

- LF Boost Generators (light front along z-axis),

$$
\mathbb{G}_{1}=\mathbb{G}_{x}=\mathbb{K}_{x}-\mathbb{J}_{y}, \quad \mathbb{G}_{2}=\mathbb{G}_{y}=\mathbb{K}_{y}+\mathbb{J}_{x}, \quad \mathbb{K}_{3}=\mathbb{K}_{z}
$$

- Comparing the action of both boosts on the same rest momentum one finds the LF boost parameters

$$
e^{\eta}=\frac{p^{+}}{m}, \quad \overrightarrow{\mathrm{v}}_{T}=\frac{\vec{p}_{T}}{p^{+}} \rightarrow \Lambda^{\mathrm{LF}}=\exp \left[i \frac{\eta}{p^{+}-m} \vec{p}_{T} \cdot \overrightarrow{\mathbb{G}}+i \eta \mathbb{K}_{3}\right]
$$

Propagators - Spinors - t-tensors

The boosts/spinors for the most used forms of dynamics

$$
D_{[L(p)]}^{(j)}=t^{\mu_{1} \mu_{2} \ldots \mu_{2 j}} \tilde{p}_{\mu_{1}} \tilde{p}_{\mu_{2}} \ldots \tilde{p}_{\mu_{2 j}}
$$

- In general

$$
\bar{D}_{[L(p)]}^{(j)}=\bar{t}^{\mu_{1} \mu_{2} \ldots \mu_{2 j}} \tilde{p}_{\mu_{1}} \tilde{p}_{\mu_{2}} \ldots \tilde{p}_{\mu_{2 j}}
$$

Instant form dynamics (Canonical)

$$
\tilde{p}_{\mathrm{C}}^{\mu}=\sqrt{\frac{1}{2 m\left(m+p^{0}\right)}}\left(p^{0}+m, \vec{p}\right)
$$

Light-Front dynamics (Light Cone time)

$$
\tilde{p}_{\mathrm{LF}}^{\mu}=\sqrt{\frac{1}{4 m p^{+}}}\left(p^{+}+m, p_{\ell}, i p_{\ell}, p^{+}-m\right)
$$

\tilde{p}^{μ} not four-vectors, but same for any spin. Left/right related by complex conjugation. (Helicity spinor also recovered with specific parameters)

Spin 1/2 Example: Bilinears

Spin 1/2 Bilinears

Final evaluations recover the results of [Lorcé(2017)]

- Scalar $\bar{u}_{\left(p_{f}, s_{f}\right)}^{(1 / 2)} u_{\left(p_{i}, s_{i}\right)}^{(1 / 2)}=\tilde{N} \phi_{s_{f}}^{\dagger}\left[4 P^{2} \mathbf{1}_{2}+4 m P_{\lambda}\left(\sigma^{\lambda}+\bar{\sigma}^{\lambda}\right)-\frac{i}{2}\left(\sigma_{\lambda}+\bar{\sigma}_{\lambda}\right) \varepsilon^{\lambda \beta \alpha \rho} \Delta_{\beta} P_{\alpha}\left(\sigma_{\rho}-\bar{\sigma}_{\rho}\right)\right] \phi_{s_{i}}$

$$
=\widetilde{N} \phi_{s_{f}}^{\dagger}\left[4\left(P^{2}+m P^{0}\right)+2 i \varepsilon^{0 \beta \alpha \rho} \Delta_{\beta} P_{\alpha} \sigma_{\rho}\right] \phi_{s_{i}}
$$

- Pseudoscalar

$$
\begin{aligned}
\bar{u}_{\left(p_{f}, s_{f}\right)}^{(1 / 2)} \gamma_{5} u_{\left(p_{i}, s_{i}\right)}^{(1 / 2)} & =\widetilde{N}_{s_{f}}^{\dagger}\left[m \Delta_{\lambda}\left(\sigma^{\lambda}-\bar{\sigma}^{\lambda}\right)+\left(P_{\mu}\left(\sigma^{\mu}+\bar{\sigma}^{\mu}\right)\right)\left(\Delta_{\nu}\left(\sigma^{\nu}-\bar{\sigma}^{\nu}\right)\right)-\left(\Delta_{\mu}\left(\sigma^{\mu}+\bar{\sigma}^{\mu}\right)\right)\left(P_{\nu}\left(\sigma^{\nu}-\bar{\sigma}^{\nu}\right)\right)\right] \phi_{s_{i}} \\
& =\widetilde{N} \phi_{s_{f}}^{\dagger}\left[2 \Delta^{0} \vec{P} \cdot \vec{\sigma}-2\left(P^{0}+m\right) \vec{\Delta} \cdot \vec{\sigma}\right] \phi_{s_{i}} \\
\widetilde{N} & =\widetilde{N}_{f} \widetilde{N}_{i}=\frac{1}{2 m}\left[\left(p^{0}+m\right)^{2}-\left(\frac{1}{2} \Delta\right)^{2}\right]^{-1}
\end{aligned}
$$

Spin 1/2 Example: Bilinears

Bilinears

- Vector

$$
\begin{aligned}
\bar{u}_{\left(p_{f}, s_{f}\right)}^{(j)} \gamma^{\mu} u_{\left(p_{i}, s_{i}\right)}^{(j)}= & \tilde{N} \phi_{s_{f}}+\left[\frac{1}{2} \Delta^{2}\left(\sigma^{\mu}+\bar{\sigma}^{\mu}\right)-\frac{1}{2} \Delta_{\lambda}\left(\sigma^{\lambda}+\bar{\sigma}^{\lambda}\right) \Delta^{\mu}\right. \\
& +4 m P^{\mu} \mathbf{1}_{2}+2 P_{\lambda}\left(\sigma^{\lambda}+\bar{\sigma}^{\lambda}\right) P^{\mu} \\
& \left.i \varepsilon^{\mu \beta \alpha \rho} \Delta_{\beta}\left(m\left(\sigma_{\alpha}+\bar{\sigma}_{\alpha}\right)+P_{\alpha}\right)\left(\sigma_{\rho}-\bar{\sigma}_{\rho}\right)\right] \phi_{s_{i}} \\
& =\tilde{N} \phi_{s_{f}}^{\dagger}\left[\left(4\left(P^{0}+m\right) P^{\mu}+\Delta^{2} g^{0 \mu}-\Delta^{0} \Delta^{\mu}\right) \mathbf{1}_{2}\right. \\
& \left.+2 i \varepsilon^{0 \mu \beta \rho} \Delta_{\beta} \sigma_{\rho}+i \varepsilon^{\mu \beta \alpha \rho} \Delta_{\beta} P_{\alpha}\left(\sigma_{\rho}+\bar{\sigma}_{\rho}\right)\right] \phi_{s_{i}}
\end{aligned}
$$

- Pseudovector

$$
\begin{aligned}
\bar{u}_{\left(p_{f}, s_{f}\right)}^{(1 / 2)} \gamma^{\mu} \gamma_{5} u_{\left(p_{i}, s_{i}\right)}^{(1 / 2)} & =\tilde{N} \phi_{s_{f}}^{\dagger}\left[-\left(4 P^{\mu} P_{\alpha}-\Delta^{\mu} \Delta_{\alpha}\right)\left(\sigma^{\alpha}-\bar{\sigma}^{\alpha}\right)\right. \\
& \left.+\left(P^{2}-\frac{1}{4} \Delta^{2}\right)\left(\sigma^{\mu}-\bar{\sigma}^{\mu}\right)-i \varepsilon^{\mu \alpha \beta \rho} \Delta_{\alpha} P_{\beta}\left(\sigma_{\rho}+\bar{\sigma}_{\rho}\right)\right] \phi_{s_{i}}
\end{aligned}
$$

