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Motivation

Matrix elements for Operators of composite particles with arbitrary spin

Covariant decomposition of matrix element in independent non-perturbative objects

e.g. one-photon-exch.:
〈
p′, s′ |jµ| p, s

〉
= ū(p′,s′)Γ

µ
(p′,p)u(p,s) −→

spin1/2
ū(p′,s′)

[
F1(t2)γ

µ − F2(t2)

i

2m
σµνqν

]
u(p,s)

Spin-j fields embedded in objects with > 2j + 1 components

Polarization four vector (ε) for spin 1 → pµε
µ(p, s) = 0

Rarita Schwinger for spin 3/2 → γµψµ(p, s) = 0

Need for constraints, subsidiary conditions

Use (2j + 1)-component spinors

Via SL(2,C) fundamental rep tensor products [Zwanziger 60s, Polyzou ‘18]

Weinberg’s construction [64-65] (not yet applied in this context)
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Motivation

Advantages of Weinberg’s construction

Systematic approach, e.g., for any spin j

Covariant “multipole” physical interpretation

For parity conserving interactions a generalized Dirac algebra is obtained

“Basic” construction and implementation. From su(2) → su(N) algebra

Easy to switch between forms of dynamics (instant form, light front)

Use only exact degrees of freedom (chiral reps), no need for constraints

No kinematic singularities (improved analyticity properties of operators)
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Outline

Outline
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Flying over

Review of Weinberg’s formalism

Building uponWeinberg’s formalism: Bilinear Calculus

Simplification (I): Algorithm for Construction of t-tensors

Simplification (II): Algebra of t-tensors

See in Back-up slides

Examples: Spin 1/2, Spin 1

Different forms of dynamics: Canonical (Instant Form), Light Front
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Introduction: Review of Weinberg’s formalism

Weinberg’s “Feynman rules for Any Spin” [1964]

Algebra for Generators of the Lorentz group

[Jl, Jm] = iεlmnJn , [Jl,Km] = iεlmnKn , [Kl,Km] = −iεlmnJn

Two independent su(2) subalgebras → irreps (jA, jB)

Am = 1
2(Jm + iKm) , Bm = 1

2(Jm − iKm)

[Al,Am] = iεlmnAn , [Bl,Bm] = iεlmnBn , [Al,Bm] = 0

Simplest irreps that contain spin-j → (2j + 1 components)

Right-handed (j, 0): Km → −iJm

Left-handed (0, j): Km → +iJm [Wigner(1939)]
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Introduction: Review of Weinberg’s formalism

Causal chiral fields (massive, left- right-handed)

Lorentz invariant S-matrix using a Hamiltonian density built up from causal fields

U[Λ,a]ψσ(x)U
−1
[Λ,a] =

∑
σ′

(
D

(j)
[Λ−1]

)
σσ′

ψσ′ (Λx+a)

No EoM for chiral fields (only obey KG eq.)

Spinors appearing in the fields (not invariants, depend on choice boost)

D
(j)
[L(p)] = e−p̂·

~J(j)θ

D̄
(j)
[L(p)] = e+p̂· ~J(j)θ

Canonical →
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Introduction: Review of Weinberg’s formalism

Propagator of chiral fields

Numerator (invariant)
Π

(j)

σσ′(~p, ω) = m2jD
(j)

σσ′ [L(~p)]
(
D

(j)

σ′σ′′ [L(~p)]
)†

= m2j
(
e−2p̂·~J(j)θ

)
σσ′

Π̄
(j)

σσ′(~p, ω) = m2jD̄
(j)

σσ′ [L(~p)]
(
D̄

(j)

σ′σ′′ [L(~p)]
)†

= m2j
(
e2p̂·~J(j)θ

)
σσ′

Introduction of 2j-rank t-tensors

totally symmetric

covariantly traceless

Π
(j)
σσ′(~p, ω) = t

µ1µ2...µ2j

σσ′ pµ1pµ2 . . . pµ2j

Π̄
(j)
σσ′(~p, ω) = t̄

µ1µ2...µ2j

σσ′ pµ1pµ2 . . . pµ2j

gµkµl
t
µ1...µk...µl...µ2j

σσ′ = 0

Central roll of t-tensors

used to construct boosts/spinors

D
(j)
[L(p)] = tµ1µ2...µ2j p̃µ1 p̃µ2 . . . p̃µ2j

D̄
(j)
[L(p)] = t̄µ1µ2...µ2j p̃µ1 p̃µ2 . . . p̃µ2j

Instant form dynamics (Canonical)

p̃µ not four-vectors
p̃µC =

√
1

2m(m+p0) (p0 +m, ~p )
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Introduction: Review of Weinberg’s formalism

Bi-Spinors (direct sum representation (j, 0)
⊕

(0, j))

For Parity conserving interactions the direct sum of both chiral representations is
used (like the spin 1/2 case)

Boosts and bispinor (Weyl rep.)

u
(j)
(p,s) = D(j)

[Lp]

◦
u(j)
s =

(
D

(j)
[Lp] 0

0 D̄
(j)
[Lp]

)
◦
u(j)
s =

(
Π

(j)
(p̃) 0

0 Π̄
(j)
(p̃)

)
◦
u(j)
s

◦
u

(j)
s =

 ◦
φ

(j)
s
◦
φ

(j)
s

 ,
◦
φ

(j)
s = mj


...
1
...

 (1 in the s-th position)

Adjoint bispinor (D†[Λ] = βD−1
[Λ]β)

ū
(j)
(p,s)

= u
(j)
(p,s)

†β =
◦
u

(j)
s
†D(j)

[Lp]
†β =

◦
u

(j)
s
†

 0 Π
(j)
(p̃)

Π̄
(j)
(p̃)

0

 ; β =

(
0 1(j)

1(j) 0

)
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Introduction: Review of Weinberg’s formalism

Dirac Eq. & Gamma matrices

The bispinor satisfy the Dirac eq.(
γµ1···µ2jpµ1 · · · pµ2j −m2j

)
u

(j)
(p,s) = 0

ū
(j)
(p,s)

(
γµ1···µ2jpµ1

· · · pµ2j
−m2j

)
= 0

The gamma matrices appear from D
(j)

[Lp]
0

0 D̄
(j)
[Lp]

 0 D
(j)

[Lp]

D̄
(j)
[Lp]

0

 =

 0
(

Π
(j)
(p̃)

)2(
Π̄

(j)
(p̃)

)2
0

 =

 0 Π
(j)
(p)

Π̄
(j)
(p)

0

 = γµ1···µ2j pµ1 · · · pµ2j

γµ1···µ2j =

(
0 tµ1···µ2j

t̄µ1···µ2j 0

)
; β = γ0···0 ; γ5 =

(
−1(j) 0

0 1(j)

)
Frank Vera (fveraveg@fiu.edu) (2023 Early Career Workshop EICUG)Observables for targets with any spin July 22, 2023 9 / 30



Dirac Bilinear Calculus Generalization

Generalized Bilinears

ū
(j)

(pf ,sf )Γu
(j)

(pi,si)
= 1

(mfmi)2j
◦
u

(j)
sf
†

(
0 tβ1···p̃fβ1···

t̄β1···(p̃fβ1···)
∗ 0

)
Γ

(
tα1···p̃iβ1··· 0

0 t̄ᾱ1···(p̃iα1···)
∗

)
◦
u

(j)
si

Dirac basis:

4(2j + 1)2

ind. elements

Γ = 1 (1) , γµ1...µ2j (2j + 1)2 , γ5γ
µ1...µ2j (2j + 1)2 , γ5 (1)

[γµ1...µ2j , γν1...ν2j ] 2
∑2j
n=1,3,···(2n+ 1)

{γµ1···µ2j , γν1···ν2j}traceless 2
∑2j
n=0,2,···(2n+ 1)

Examples

Spin-1/2 (16): 1(1), γµ(4), [γµ, γν ](6), ({γµ, γν} − 2gµν) (0), γµγ5(4), γ5(1)

Spin-1 (36): 1(1), γµν(9), [γµ1µ2 , γµ3µ4 ](6), {γµ1µ2 , γµ3µ4}trless(10), γµνγ5(9), γ5(1)

Matrix elements of Operators, covariant Density matrices, Amplitudes, · · ·
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Dirac Bilinear Calculus Generalization: On-Shell Identities

Generalized Gordon Identities

Dirac Equation
(
γµ1...µ2j pµ1 . . . pµ2j −m2j

)
usp = 0 leads to On-Shell (Gordon) identities

us
′
p′ (Γ)usp =

1

2m̄2j
us

′
p′

({
P/(j),Γ

}
+

1

2

[
∆/(j),Γ

])
usp

0 = us
′
p′

(
1

2

{
∆/(j),Γ

}
+
[
P/(j),Γ

])
usp

m̄2j =
1

2

(
m′

2j
+m2j

)
Pµ1...µ2j =

m̄2j

2

(
p′µ1

. . . p′µ2j

m′2j
+
pµ1 . . . pµ2j

m2j

)

∆µ1...µ2j = m̄2j

(
p′µ1

. . . p′µ2j

m′2j
−
pµ1 . . . pµ2j

m2j

)
P
µ1...µ2j

(p′,p) = P
µ1...µ2j

(p,p′)

∆µ1...µ2j
(
p′, p

)
= −∆µ1...µ2j

(
p, p′

)
Pµ1...µ2j ∆µ1...µ2j = 0

→

Gordon identity separates general bilinears into convection and magnetization currents.

Useful to reduce independent Dirac structures
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Simplification (I): Algorithm for construction of t-tensors

Insightful construction for the t-tensors

The 0-th degree polynomial in the J ’s is always t0...0 = 1

The linear polynomials
are the Rotation Group Generators t0...i...0 =

2

2j
Ji =

1

j
Ji

From pairwise symmetrizations of the rotation generators

t0...m...0...n...0 = tmn0...0 =
1

(2j)!
2!(2j−2)!

(
{Jm, Jn} −

1

3
δmn

3∑
r=1

{Jr, Jr}

)
+

1

3
t0...0δmn

=
j

(2j − 1)

({
tm0...0, tn0...0

}
− 1

j
δmnt

0...0

)
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Simplification (I): Algorithm for construction of t-tensors

Continues for higher orders

Matrices have more and more off-diagonal elements

tlmn0...0 = t0...0l0...0m0...0n0...0 =
j

(2j − 2)

1

3

({
tl0...0, tmn0...0

}
+
{
tm0...0, tnl0...0

}
+
{
tn0...0, tlm0...0

}
−2

j

{
δlmt

n0...0 + δlnt
m0...0 + δmnt

l0...0
})

Construction stops after j steps (Cayley-Hamilton) (J − s)(J − s− 1)...(J + s) = 0

t-tensors contain a basis for su(N=2j+1) (Universal Enveloping Algebra)

A basis to decompose operators with physical interpretation for each term.
Multipole expansion → mono-, di-, quadrupole, ...

Ô = Tr [O]1 + Tr [OJi] Ji + Tr [OJij ] Jij + · · · = 〈O〉1 +OiJi +OijJij + · · ·
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tµ-tensor for Spin 1/2

0-th order terms in J
(1/2)
i : t0 = 1

Linear terms in J
(1/2)
i : ti = 1

1/2J
(1/2)
i = σi

(Pauli matrices)

J
(1/2)
1 =

(
0 1
1 0

)
, J

(1/2)
2 =

(
0 −i
i 0

)
, J

(1/2)
3 =

(
1 0
0 −1

)

Quadratic terms in J
(1/2)
i

(J (1/2) − 1
21)(J (1/2) + 1

21) = 0 =⇒ (J (1/2))2 = c01 + c2J
(1/2)
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tµν-tensor for Spin 1

0-th order terms in J
(1)
i : t00 = 1

Linear terms in J
(1)
i : t0i = J

(1)
i

t01 =
1√
2

 0 1 0
1 0 1
0 1 0

 , t02 =
i√
2

 0 −1 0
1 0 −1
0 1 0

 , t03 =

 1 0 0
0 0 0
0 0 −1


Quadratic terms in J

(1)
i : tij = {J(1)

i , J
(1)
j } − 1δij

t11 =

 0 0 1
0 1 0
1 0 0

 , t22 =

 0 0 −1
0 1 0
−1 0 0

 , t33 =

 1 0 0
0 −1 0
0 0 1



t12 =

 0 0 −i
0 0 0
i 0 0

 , t13 =
1√
2

 0 1 0
1 0 −1
0 −1 0

 , t23 =
i√
2

 0 −1 0
1 0 1
0 −1 0


Cubic terms in J

(1)
i : (J(1) − 1)(J(1))(J(1) + 1) = 0 =⇒ (J(1))3 = c01 + c2J

(1) + c3(J(1))2
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Simplification (II): Algebra of t-tensors

Reduction for Cubic Monomials

Monomials always appear in bilinear calculus with an alternating “barring” pattern

tµ1···µ2j t̄ν1···ν2j tρ1···ρ2j =
1

[(2j)!]2
S

{ν1...ν2j}
S

{ρ1...ρ2j}

(
C̄µ1ν1ρ1β1 C̄µ2ν2ρ2β2 · · · C̄µ2jν2jρ2jβ2j

)
tβ1···β2j

The coefficient tensors:
(Invariant tensors)

C̄µραβ = gµρgαβ − gµαgρβ + gµβgρα + iεµραβ

Compare with:
Tr
{
γµγργαγβ

}
= 4

(
gµρgαβ − gµαgρβ + gµβgρα

)
Tr
{
γµγργαγβγ5

}
= 4iεµραβ

Trading matrix multiplication by number multiplication
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Simplification (II): Algebra of t-tensors

Reduction for Quadratic Monomials

Monomials always appear in bilinear calculus with an alternating “barring” pattern

tµ1···µ2j t̄ν1···ν2j
(
tρ1···ρ2j ηρ1 · · · ηρ2j

)
=

1

(2j)!
S

{ν1...ν2j}

(
C̄µ1ν1ρ1β1ηρ1 C̄

µ2ν2ρ2β2ηρ2 · · · C̄
µ2jν2jρ2jβ2j ηρ2j

)
tβ1···β2j

The condition tρ1···ρ2jηρ1 · · · ηρ2j = 1(2j+1)×(2j+1) defines ηρ

in Lorentz coordinates t0···0 = 1 , thus ηµ → ηµC = (1, 0, 0, 0)

General result (D̄µρα(η) ≡ C̄
µρσαησ − gµρηα = −gραηµ + gµαηρ + iεµρσαησ)

tµ1···µ2j t̄ρ1···ρ2j = 1
(2j)!

S
{ρ1...ρ2j}

∑2j
n=0

∏n
l=1 D̄

µlρlαl
∏2j
k=n+1 g

µkρkηαk + · · ·︸︷︷︸
choices for l,k

 tα1···α2j

Covariant (sl(2,C)) Multipole expansion
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Spin 1 Example: EM Current

Using spinor representation: 〈p′, s′ |jµ(0)| p, s〉 =
◦
φ

(1)

s′ Γµ(p′,p)
◦
φ

(1)
s

m2Γµ(p′,p) = 2Pµ
[
P 21GC

(
Q2)−∆ρ∆σ

(
tρσ −

1

3
gρσ1

)
GQ

(
Q2)]

−iεµρσλ
[
∆ρPσ

(
tλν −

1

3
gλν1

)
nνtGM

(
Q2)]P = 1

2
(p′ + p)

∆ = p′ − p (∆2 = −Q2)

nνt = (1, 0, 0, 0)

Using polarization vectors: 〈p′, s′ |jµ(0)| p, s〉 = ε∗s′
α (p′) Γµαβ(P,∆)εβs (p)

[Wang & Lorcé (2022)]
Γµαβ = 2Pµ

(
ΠαβGC

(
Q2)− ∆ρ∆σ (Σρσ)αβ

2m2

P 2

m2
GQ

(
Q2))

−iεµρσλ
(

∆ρPσ (Σλ)αβ√
P 2

GM
(
Q2))
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Summary

Weinberg’s construction allows for an efficient and manifestly covariant calculation of
currents for any spin

Central (and multifaceted) role for the covariant t-tensors

Simple algorithm. Only need to know the matrices for the Generators of rotations in
the representation of interest.

Covariant sl(2,C)-multipole basis for operators.
more transparent physical interpretation

Universality of the method for any spin.
intuition on spin 1/2 can be carried over to higher spin

No need to work with explicit representations of spinors (Dirac matrices)
Everything reduces to Lorentz covariant t-matrix algebra (Cµνρλ, just numbers)
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Summary

Many applications and extensions possible

Local operators parameterizations: Generalized Form Factors
(two independent four-vectors)

Bilocal operators parameterizations
(more than two independent four-vectors)

Transition matrix elements

Use in χEFT’s for high energy processes
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Thanks!

Questions?
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Properties of the t-tensors

Properties of the t-tensors

Each tµ1...µ2j is a 2j-rank tensor

Symmetric and (covariantly) traceless gµkµl
t
µ1...µk...µl...µ2j

σσ′ = 0

Transform covariantly
(
D

(j)
[Λ]

)
σδ
t
µ1...µ2j

δδ′

(
D(j)†

[Λ]

)
δ′σ′

= Λν1
µ1 . . .Λν2j

µ2j t
ν1...ν2j
σσ′

Right chiral (t) and left chiral (t̄)
are related by charge conjugation

(+ for even (− for odd) spacelike indices)

t̄
µ1µ2...µ2j

σσ′ = (±)t
µ′
1µ

′
2...µ

′
2j

σσ′
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Spin 1/2 Example: Spinors

Right Chiral Rep

t0 = 1 , ti = σi

tµ Transform Covariantly: D
(1/2)
[Λ] tµD(1/2)†

[Λ] = Λρ
µtρ

Propagator (Lorentz invariant): Π(1/2)(p) = tµpµ =

(
E − pz −(px − ipy)

−(px + ipy) E + pz

)
pµ = (Ep, ~p)

Boost/spinors (Canonical): D
(1/2)
IF = tµp̃C

µ =
1√

2m (m+ p0)

(
m+ p− −p`
−pr m+ p+

)
p̃µC =

√
m

2(m+p0)
(p0 +m, ~p )

Similarly for the Left Chiral Rep, only change is: J
(1/2)
i → J̄µ = (1,− ~J (1/2))
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Spin 1 Example: Spinors

Right Chiral Rep

t00 = 1 , t0i = ti0 = J
(1)
i , tij = {J (1)

1 , J
(1)
1 } − 1δij

tµν Transform covariantly D
(1)
[Λ]t

µνD(1)†
[Λ] = Λρ

µΛσ
νtρσ

Propagator (pµ = (Ep, ~p)): Π(1)(p) = tµνpµpν =

 (p−)
2 −

√
2p`p

− p2
`√

2prp
+ p+p− + p2

T

√
2p`p

−

p2
r

√
2prp

− (p+)
2


Boost/spinors (tµν p̃µp̃ν)

Canonical: D
(1)
IF =

1

2m (m+ p0)

 (m+ p−)2 −
√

2p`(m+ p−) p2
`

−
√

2pr(m+ p−) 2(m2 +mp0 + p2
T) −

√
2p`(m+ p+)

p2
r −

√
2pr(m+ p+) (m+ p+)

2


p̃µC =

√
m

2(m+p0)
(p0 +m, ~p )

Similarly for the Left Chiral Rep, only change is: J
(1)
i → J̄µ = (1,− ~J (1))
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Canonical Space-Time Parameterization

Parameterizations (Foliations) of space-time → Specify equal time surfaces

[Wigner(1939)]Canonical or Instant time: x0 = t

Defined by rotationless boosts from rest:
◦
pµ = (m, 0, 0, 0)

to final momentum: pµ = (Ep, ~p ) = (
√
m2 + ~p 2, ~p )

ΛIF = exp
(
i~K · ~φ

)
= exp

(
iφ~K · φ̂

)
Then, pµ = (E, ~p ) = (ΛIF)µν

◦
p ν

implies, cosh(φ) = E
m , φ̂j sinh(φ) =

pj
m

Leading to the well known result: (ΛIF)µν =

(
E
m

~p
m

~p
m δij +

pipj
(E+m)m

)
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Light-Front Space-Time Parameterization

Light Front time: x+ = t+ z Dirac(1949)

p+ = Ep + pz , p− = Ep − pz

Defined by a longitudinal boost followed by a transverse boost

ΛLF
def. = exp

[
i~G · ~vT

]
· exp [iK3η]

LF Boost Generators (light front along z−axis),

G1 = Gx = Kx − Jy , G2 = Gy = Ky + Jx , K3 = Kz

Comparing the action of both boosts on the same rest momentum

one finds the LF boost parameters

eη = p+

m , ~vT = ~pT
p+ → ΛLF = exp

[
i η
p+−m~pT · ~G + iηK3

]
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Propagators - Spinors - t-tensors

The boosts/spinors for the most used forms of dynamics

In general

D
(j)
[L(p)] = tµ1µ2...µ2j p̃µ1 p̃µ2 . . . p̃µ2j

D̄
(j)
[L(p)] = t̄µ1µ2...µ2j p̃µ1 p̃µ2 . . . p̃µ2j

Instant form dynamics
(Canonical)

p̃µC =

√
1

2m(m+ p0)
(p0 +m, ~p )

Light-Front dynamics
(Light Cone time)

p̃µLF =

√
1

4mp+
(p+ +m, p`, ip`, p

+ −m)

p̃µ not four-vectors, but same for any spin. Left/right related by complex conjugation.

(Helicity spinor also recovered with specific parameters)
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Spin 1/2 Example: Bilinears

Spin 1/2 Bilinears

Final evaluations recover the results of [ Lorcé(2017)]

Scalar ū
(1/2)

(pf ,sf )u
(1/2)

(pi,si)
= Ñφ†sf

[
4P 212 + 4mPλ

(
σλ + σ̄λ

)
− i

2
(σλ + σ̄λ) ελβαρ∆βPα (σρ − σ̄ρ)

]
φsi

= Ñφ†sf
[
4
(
P 2 +mP 0

)
+ 2iε0βαρ∆βPασρ

]
φsi

Pseudoscalar

ū
(1/2)
(pf ,sf )

γ5u
(1/2)
(pi,si)

= Ñφ†sf

[
m∆λ

(
σλ − σ̄λ

)
+ (Pµ (σµ + σ̄µ)) (∆ν (σν − σ̄ν))− (∆µ (σµ + σ̄µ)) (Pν (σν − σ̄ν))

]
φsi

= Ñφ†sf

[
2∆0 ~P · ~σ − 2

(
P 0 +m

)
~∆ · ~σ

]
φsi

Ñ = Ñf Ñi =
1

2m

[(
p0 +m

)2 − (1

2
∆

)2
]−1
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Spin 1/2 Example: Bilinears

Bilinears

Vector ū
(j)

(pf ,sf )γ
µu

(j)

(pi,si)
=Ñφsf +

[
1

2
∆2 (σµ + σ̄µ)− 1

2
∆λ

(
σλ + σ̄λ

)
∆µ

+ 4mPµ12 + 2Pλ
(
σλ + σ̄λ

)
Pµ

iεµβαρ∆β (m (σα + σ̄α) + Pα) (σρ − σ̄ρ)
]
φsi

= Ñφ†sf
[(

4
(
P 0 +m

)
Pµ + ∆2g0µ −∆0∆µ)12

+2iε0µβρ∆βσρ + iεµβαρ∆βPα (σρ + σ̄ρ)
]
φsi

Pseudovector ū
(1/2)
(pf ,sf )

γµγ5u
(1/2)
(pi,si)

= Ñφ†sf [− (4PµPα −∆µ∆α) (σα − σ̄α)

+

(
P 2 −

1

4
∆2

)
(σµ − σ̄µ)− iεµαβρ∆αPβ (σρ + σ̄ρ)

]
φsi
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