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Motivation

* A Zero Degree Calorimeter would be situated far
downstream of the proton beam, where charged particles
have been steered away

* The baseline design for the ZDC is subdivided into an EM
and hadronic section, and utilizes lead for absorber plates

* Lead absorbers provide a similar response for EM and
hadronic showers (hardware compensation)

e Switching lead for iron would simplify assembly, and
compensation could instead be done in software using high
granularity shower-cell topology
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* Hexagons were chosen minimize dead space, and

Tl ‘ e Stagge rl ng improve tile response uniformity

» Staggering layers can improve angular resolution
and optimize performance
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Traditional Shower Position Reconstruction

AR AL A B
Q 0 ’ where w; = max (0, wo + In )
.. Etot

using woy = 4.0

"

* Traditional method of shower position
reconstruction uses cell-energy logarithmic

® weighting

* w, was picked to be 4.0, but this value was not
optimized
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Position Resolution with and without staggering

H3 staggering
=t - > td T

Using GEANT4 in the
DD4HEP framework, we
simulated single 50 GeV
neutron events

We observe significant
improvements with
staggering, even with a
simple algorithm
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Shower Position Reconstruction with Sub-Cell
Welghtlﬂg input output

5 — E 5z"wia

iesubcells

Eywt
where w; = max (O wo + In — )
Etot
using wo = 5.0 _
E;wt — Ehlt wrwt /
Wiy o (B} + €)(B{™™ +¢)

e Each cell is divided into “sub-cells”,
with energy contributions from
overlapping cells upstream and
downstream




Staggering and sub-cell reweighting improves

position resolution by factor of 2!
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Neutron Flux Expected
in the ZDC Region

. SiPMs can survive this neutron
flux for the course of one run 140

. After each run, SiPMs can be

annealed to recover
functionality

- Berkeley radiation test
incoming!

1 MeV equivalent neutron fluence for minimum-bias

PYTHIA e+p events at 10x275 GeV at top luminosity for 6

months

10x275GeV e+p, top luminosity, 1 run period (~6 months)
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1 MeV Equiv. Neutron Fluence [cm?]
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Energy Resolution Before Software Compensation
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No software compensation yields an

energy resolution of ~50%/VE,
meeting the Yellow Report
requirement

Performance can be improved with
software reweighting to somewhere

between 40-45%/\VE

We are carrying out compensation

studies similar to what we did with the

HCAL Insert

12



insulating layer
(0.07 cm)

SiPM-carrying PCB
with UV LEDs

summary

dowel pin ESR foil

link plate (0.015 cm)

3D-printed

O
\ Q\ frame
ESR foil

scintillator tiles
(0.015 cm) radius=3.1 cm

Absorber block
thickness=2 cm

3659212

An HCAL Insert-style ZDC meets the Yellow Report requirements for both
position and energy resolution

Compensation via reweighting can take advantage of the high granularity
design

Fe absorber blocks can be recycled from STAR, significantly helping cost
and construction

Each channel can be easily calibrated and monitored individually via LEDs
SiPMs remain accessible for easy maintenance, annealing will help the
ZDC survive in the high fluence environment long-term
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