EICUG Early Career Workshop

Probing the exclusive vector meson production at the EIC

24 July 2023

Zvi Citron¹, Eden Mautner¹, <u>Michael Pitt¹</u>

¹Ben Gurion University of the Negev

Goals

- Probing the low-X structure of the nucleus
- Probing spatial parton structure of nuclei

Methodology

- Measuring coherent vector meson (VM) production
- Differential cross-section $(d\sigma/dt)$ as a function of momentum transfer \rightarrow spatial distributions of gluons

Coherent and incoherent production

Event Kinematics

- Reconstruction of parameters of insterest:
 - e incoming electron (determined by beam parameters)
 - e' outgoing electron (measured)
 - *VM* vector meson (measured)
- Energy scale Q2 = -(e e').M2()
- Momentum transfer -t = (VM (e e')).M2()
- Meson transverse momentum VM_PT=VM.Pt()

Coherent and incoherent production

Event Kinematics

- Reconstruction of parameters of insterest:
 - e incoming electron (determined by beam parameters)
 - e' outgoing electron (measured)
 - *VM* vector meson (measured)
- Energy scale Q2 = -(e e').M2()
- Momentum transfer -t = (VM (e e')).M2()
- Meson transverse momentum VM_PT=VM.Pt()

Selected (past) studies

• Coherent and incoherent J/ ψ photoproduction in PbPb collisions at the LHC, HE-LHC

- Expected large rates
- Tagging of coherent events is a subject of ongoing studies

Selected (past) studies

Coherent J/ψ photoproduction at forward rapidity in PbPb UPC (<u>1904.06272</u>)

- Expected large rates
- Observing the dips in coherent events is a subject of ongoing studies

Selected (past) studies

• Exclusive diffractive processes in electron-ion collisions (<u>1211.3048</u>):

Target Q²>1 GeV² – backward electron reconstruction

M. Pitt @ EICUG Early Career Workshop

Selected (past) studies

• Investigation of the background in coherent J/ ψ production at the EIC (2108.01694):

- Veto.1: no activity other than e^- and J/ψ in the main detector ($|\eta| < 4.0$ and $p_T > 100 \text{ MeV}/c$);
- Veto.2: Veto.1 and no neutron in ZDC;
- Veto.3: Veto.2 and no proton in RP;
- Veto.4: Veto.3 and no proton in OMDs;
- Veto.5: Veto.4 and no proton in B0;
- Veto.6: Veto.5 and no photon in B0;
- Veto.7: Veto.6 and no photon with E > 50 MeV in ZDC.

Strong background rejection with FFD at the EIC

24 July 2023

M. Pitt @ EICUG Early Career Workshop

Selected (past) studies

Peter Steinberg talk @ EICUG Theory WG meeting

• Challenges in measurements of exclusive J/ψ at the EIC

Selected (past) studies

Peter Steinberg talk @ EICUG Theory WG meeting

• Challenges in measurements of exclusive J/ψ at the EIC

Selected (past) studies

Peter Steinberg talk @ EICUG Theory WG meeting

• Challenges in measurements of exclusive J/ψ at the EIC

Simulation setup

Event generation

- Simulation with eStarlight¹: $e + A \rightarrow VM + e' + A'$
- Ions: ¹⁶O, ⁶³Cu, ⁹⁰Zr and ²⁰⁸Pb
- Vector mesons: rho, omega, J/psi, Phi, Upsilon
- Consider different energies: 5x100 GeV² and 18x275 GeV² (energies of the accelerated electron and proton beam respectively)

Event Reconstruction

Using ePIC@EIC detector simulation and event reconstruction

Highlights from the study will be shown in the following slides

¹<u>https://github.com/eic/estarlight</u>

Momentum transfer and Q2

Q2 dependence

- Q² is correlated with outgoing electron rapidity.
- Only for low Q, VM pT is correlated with the t
- Can we veto backward electron to reach a low Q?

M. Pitt @ EICUG Early Career Workshop

eStarLight Simulation

Work in progress

[pb / bin]

10³

ePb 18×110

13

 $Q^2 < 0.01$

Analysis

Event categorization

- Depends on the electron reconstructed eta
 - Central detector: ~10%
 - Low-Q2 taggers: ~40%
- Energy resolution larger in the central region

ePIC Simulation

ய் ₂₅₀

150

100

Work in progress

-1000 -500

E/n = 108.4 GeV

1000 1500 2000

500

 $-4 < \eta < 0$

μ = -3.065

σ = 277.0 MeV

ePIC Simulation

Work in progress

8600

ePIC Simulation

⊖ ¥6000

14000

12000

10000

8000

6000

4000

2000

μ = -28.463

E/n = 108.4 GeV

1000

 $-6 < \eta < -4$

σ = 161.8 MeV

Analysis (work in progress)

Event reconstruction

- Reconstruction of Momentum transfer:
 - Using VM PT only as a proxy to t already shows

the presence of the first minima

Work in progress

- Improving t reconstruction
 - Adding the electron reconstruction information
 - Ion mass constrain

15

Summary and discussion

Summary

- Coherent vector meson production is a promising channel for studying gluon structure functions of nuclei and is sensitive to gluon saturation effects
- Measurement benefits from the extensive Far-Forward detectors array to suppress the incoherent backgrounds
- The Far-Backward detectors open the door to tag coherent processes at very low Q
 - ✓ Better t reconstruction
 - ✓ Higher cross-section

Work in progress

• The study is ongoing, the next step is background estimation for very low-Q2

Selected (past) studies

- Coherent and incoherent J/ ψ photoproduction in PbPb collisions at the LHC, HE-

LHC and FCC (2007.13625):

- Expected large rates
- Observing the dips in coherent events is a subject of ongoing studies

eStarlight setup

TARGET BEAM Z = 82 #Z of target TARGET BEAM A = 208 #A of target ELECTRON BEAM GAMMA = 35295 #18 GeV electrons from eRHIC TARGET BEAM GAMMA = 115.8 #275*82/208 GeV/n Pb from eRHIC W MAX = -1 #Max value of w from HERA W MIN = -1 #Min value of w from HERA **Modified** parameters W N BINS = 50 #Bins i w EGA N BINS = 400CUT PT = 0 #Cut in pT? 0 = (no, 1 = yes)PROD MODE = 12 # coherent vector meson (narrow) PROD_PID = 443013 # J/psi production RND SEED = 1 #Random number seed, change when producing multiple output files BREAKUP_MODE = 5 #Controls the nuclear breakup; a 5 here prakes no requirement on the breakup of the ions PYTHIA_FULL_EVENTRECORD = 1 # Write full pythia information to output (vertex, parents, daughter etc). MIN GAMMA Q2 = Q2MIN #change this parameter MAX GAMMA Q2 = Q2MAX #change this parameter QUANTUM GLAUBER = 1 # Do a quantum Glauber calculation instead of a classical one SELECT IMPULSE VM = 0 # Impulse VM parameter OUTPUT FORMAT = 0 # 0 – Standard, 1 - Pythia, 2 - HEPMC

Cross-sections

Different mesons

• All vector meson production processes show the same t spectra, J/psi has the highest cross-section.

Cross-sections

Different beam energies

- Similar cross-section for high t
- High energy configuration more sensitive to Q2~0

Momentum transfer

Different mesons at low Q2

• Similar spectra for different VM

M. Pitt @ EICUG Early Career worksnop

Analysis

Reconstruction of Q2

Event categorization

