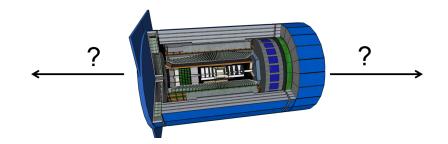
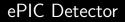


ePIC Detector


 Normally when someone shows the ePIC detector, they'll show you something like this -

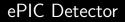
24/07/23

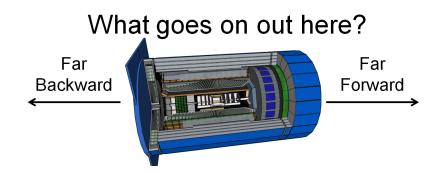
2 / 20


ePIC Detector

Stephen JD Kay University of York

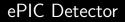
24/07/23

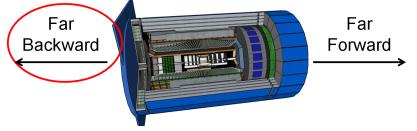

2 / 20



What goes on out here?

24/07/23

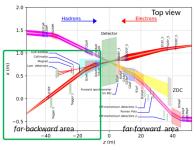

2 / 20



24/07/23

2 / 20

What goes on out here?


24/07/23

2 / 20

Far Backward Region

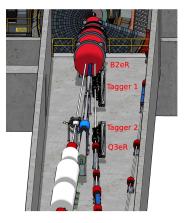
Stephen JD Kay

- Relatively simple, but very important, set of detectors systems in this region
 - Luminosity monitors
 - Low Q^2 tagger

24/07/23

3

20


Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023

Far Backward - Luminosity Monitors

- Luminosity measurements provide the required normalisation for all physics studies
 - Absolute cross sections
 - Combining run periods
 - Asymmetry measurements
 - Relative luminosity of different bunch crossings
- Require accuracy on the order of $\sim 1\%$

Stephen JD Kay

Relative luminosity $> 10^{-4}$ precision

24/07/23

20

Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023

Luminosity Monitors - Measurements

• Use bremsstrahlung process to measure luminosity

$$\begin{array}{l} \mathbf{e} + \mathbf{p} \rightarrow \mathbf{e} + \mathbf{p} + \gamma \\ \mathbf{e} + \mathbf{A} \rightarrow \mathbf{e} + \mathbf{A} + \gamma \end{array}$$

- σ known precisely from QED
- γ strongly peaked in forward (e^- beam) direction
 - Beam divergence has a large effect - ∼200µrad!

University of York

- Two luminosity monitor systems
 - Direct Photon Detector (High rate calorimeter)
 - Pair Spectrometer

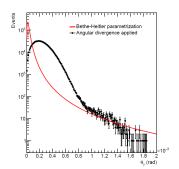
Figures - EIC Yellow Report - Section 11.7.1, p575

Stephen JD Kay

do/dE, (mb/GeV) -275×18 275×10 100×10 100×5 -41×5 20 10 10 12 14 16 18 20 Ε_γ (GeV) do/dθ_y (arb. units) 18 GeV 10 GeV 5 GeV 80 100 120 140 160 180 20 θ. (μrad) ed Jul 22 17:22:52 2020

24/07/23 5 / 20

Luminosity Monitors - Measurements


• Use bremsstrahlung process to measure luminosity

$$\begin{array}{l} \mathbf{e} + \mathbf{p} \rightarrow \mathbf{e} + \mathbf{p} + \gamma \\ \mathbf{e} + \mathbf{A} \rightarrow \mathbf{e} + \mathbf{A} + \gamma \end{array}$$

- σ known precisely from QED
- γ strongly peaked in forward (e^- beam) direction
 - Beam divergence has a large effect - ~200µrad!
- Two luminosity monitor systems
 - Direct Photon Detector (High rate calorimeter)
 - Pair Spectrometer

Figure - EIC Yellow Report - Section 11.7.1, p576

Stephen JD Kay University of York

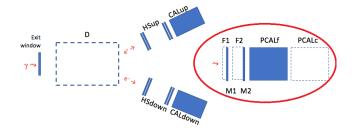
<u>24</u>/07/23

Direct Photon Detector

Stephen JD Kay

- In principle, direct bremmstrahlung photon measurement straightforward
- Could simply count photons above some energy cutoff
- Only possible at low luminosities
- At EIC luminosity, expect large number of photons
- At $\mathcal{L}\approx 10^{34} \rm cm^{-2} s^{-1},$ expect about 23 hard photons per bunch crossing
- Two separate direct photon detectors proposed
 - $\circ\,$ One with excellent energy resolution, used only for special luminosity runs at low ${\cal L}$

24/07/23

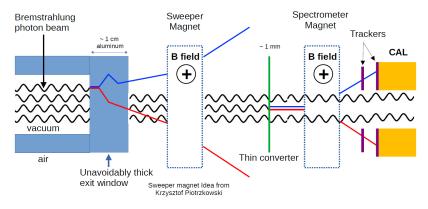

6 / 20

- $\circ~$ One capable of withstanding $> 1~{\rm GHz}$ rates, used for monitoring during nominal running
- DPD and PS highly complementary detectors, two independent measurements

Direct Photon Detector

Stephen JD Kay

- Use thick absorbers/filters to attenuate synchrotron radiation
- Studies underway to quantify dosage for photon detectors
- Latest design, fiber based calorimeter
- See talk by Krzysztof Piotrzkowski at 10:25 on 29/07/23 for more on the DPD/HRC

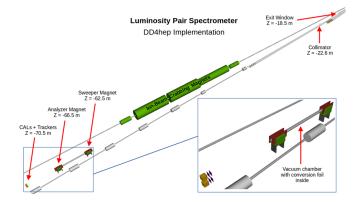

24/07/23

20

Figure - J. Nam, Temple University, ePIC Collaboration meeting January 2023

Pair Spectrometer

- Pair spectrometer outside of main synchrotron radiation fan • 5σ gap
- Some bremmstrahlung photons converted to e^+e^- pairs


24/07/23

8 / 20

Figure - D. Gangadharan, University of Houston

Pair Spectrometer

• Conversion foil within vacuum pipe, between magnets

24/07/23

9

20

Figure - D. Gangadharan, University of Houston

Pair Spectrometer

• Conversions in air before pipe, negligible effect

University of York

 ${}_{\odot}~<0.02\%$ contribution to systematics

24/07/23

10

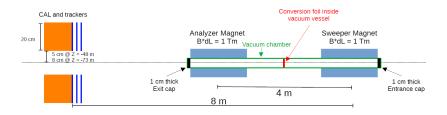

20

Figure - D. Gangadharan, University of Houston

Stephen JD Kay

Pair Spectrometer - Overview

- $\bullet\,$ Based upon recent feedback from magnet designers, 1 ${\rm Tm}\,$ fields and 15 ${\rm cm}\,$ bore diameter possible
- $\circ\,$ New baseline design with sweeper magnet $\sim 65~{
 m m}$ from IP
- See Dhevan's talk at 10:45 on 29/07/23 for more on this updated design!

24/07/23

11

20

University of York

Figure - D. Gangadharan, University of Houston

Stephen JD Kay

Pair Spectrometer - General Requirements

- Exit window and conversion foils
 - Well known composition and thickness of exit window and conversion foils
 - Foil needs to withstand heat load!
- Sweeper and analyser magnets
 - \circ BdL pprox 1 Tm, compact system, \sim 15 cm bore diameter

24/07/23

12

20

- Allows placement far from central region
- Small fringe fields
- Good vacuum for minimal air conversions
- Calorimeter
 - $17\%/\sqrt{E}$ energy resolution sufficient
 - Based upon ZEUS experience
 - Segmented readout, disentangle pileup
 - $\, \bullet \, \sim$ ns timing resolution, bunch-by bunch ${\cal L}$

Stephen JD Kay

Pair Spectrometer - Trackers

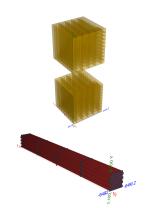
- $\,$ $\,$ Trackers could be used to obtain $\sim 1\%$ energy resolution
- Resolution strongly affected by end cap thickness and material
- Excellent tracking possible
 - Excellent energy resolution
 - Excellent pointing resolution
- Still need to choose technology, same as Low Q^2 tagger

University of York

Figures - D. Gangadharan, University of Houston

Stephen JD Kay

13 / 20


24/07/23

Pair Spectrometer - Calorimeters, WSciFi

- Updated design tungsten scintillating fiber calorimeter(WSciFi)
 - W powder and epoxy with embedded fiber grid
- Tweak volumetric ratio between W/SciFi to adjust many parameters
 - Radiation length
 - Molière radius

Stephen JD Kay

- Sampling fraction
- Energy resolution
- Studying new XY fiber design
 - 3D shower profile possible
 - Potential AI/ML applications

Figures - A. Giri, University of Houston

14 / 20

24/07/23

• See Aranya Giri's talk at 11:40 on 23/07/24 for more info and the latest on simulations!

Pair Spectrometer - Calorimeters, WSciFi

- Preliminary design ideas based upon sPHENIX calorimeters
- Recent R&D work by O.Tsai
 - o doi:10.1088/1742-6596/404/1/012023
- Learn from this for ePIC lumical construction

University of York

24/07/23

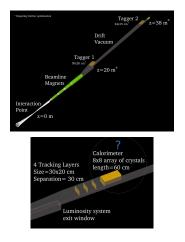

15 / 20

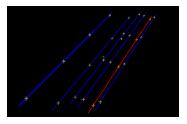
Figure - doi:10.1088/1742-6596/404/1/012023

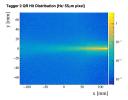
Stephen JD Kay

Low Q^2 Tagger

- Quasi-real tagging (low Q^2), $\theta_e < 10 \text{ mrad}$
 - $Q^2 \sim 10^{-2} \text{ GeV}^2$
- Detector goals
 - Large acceptance (> 10%)
 - \circ Good energy resolution $\leqslant 1\%$
 - Reconstruction of scattering plane (polarisation)
- Two in-vacuum tagger modules
- Timepix4+SPIDR4 detectors
- Investigating neural networks for kinematic reconstruction

Figures - S.Gardner, University of Glasgow, ePIC Collaboration meeting January 2023


Stephen JD Kay


University of York

24/07/23 16

Low Q^2 Tagger

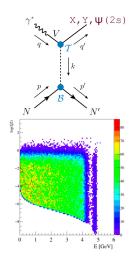
- Typical bunch crossings at 18×275
 - $\circ~{\sim}12$ electrons
 - ${\scriptstyle \circ } \sim 7$ accepted by tagger 2
 - 95% reconstruction efficiency

Tagger 2 Brem Hit Distribution [Hz/ 55µm pixel]

- Quasi-real e⁻ scattering event amongst bremmstrahlung e⁻
- Max rate per pixel \sim 20 kHz

Stephen JD Kay University of York

Figures - S.Gardner, University of Glasgow, ePIC Collaboration meeting January 2023


20

17

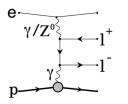
24/07/23

Far Backwards - Physics

- Far backward detectors also enable some unique physics measurements
- Meson spectroscopy
 - \circ J/ ψ , XY etc
- Example final state
 - ${\rm J}/\psi$ + π^+ + π^- + e' and nucleons
- $\, \bullet \,$ Events at both low Q^2 and t
- $\int \mathcal{L}$ at EIC very high
 - Study rare exclusive processes, not accessible at HERA

18 / 20

Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023


Stephen JD Kay

University of York

24/07/23

Far Backwards - Physics

- Dilepton production channels
 - Utilises FF and FB detectors

π - θ_e <1 mrad
Scattered proton in FF

θ_p < 6 mrad

All lepton pairs, e[±], μ[±], τ[±] can reach central detector

24/07/23

19

20

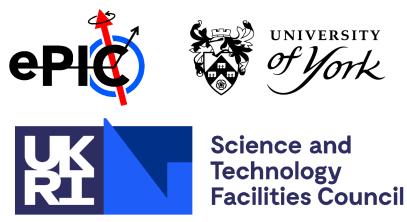
- $\bullet\,$ Background for ${\rm J}/\psi$ or υ production
- μ^{\pm} sensitive to proton charge radius
- Opportunity for data-driven calibrations with two-photon exclusive processes

• FB taggers detect e'

Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023

Summary

- ePIC is more than just the central detector!
- Far-backward region critical for luminosity monitoring
 - Needed for absolute cross sections
 - Combining run periods
- Pair spectrometer design maturing
 - Upgraded design in simulation, advanced testing in progress
 - Preliminary design and testing of XY WSciFi calorimeter expected at York this year
- Low Q^2 tagger design also converging
- Far-backward detectors enable unique physics measurements

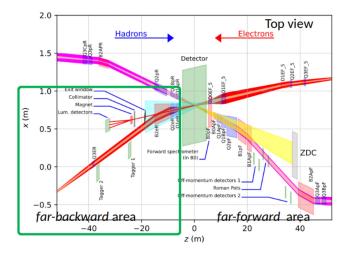

24/07/23

20

20

Stephen JD Kay

Thanks for listening, any questions?



stephen.kay@york.ac.uk

This research was supported by UK Research and Innovation: Science and Technology Facilities council (UKRI:STFC) grant ST/W004852/1

Backup Zone

IP6 Overview

Stephen JD Kay

University of York

24/07/23 21 / 20

Luminosity Requirements and Systematics

- Yellow Report Requirements
 - ${\scriptstyle \circ } ~{\sim}1\%$ uncertainty for absolute luminosity
 - Less than 10^{-4} for relative luminosity
- Compare to Zeus lumi systematics

Component	Sub-Component systematics	ePIC Improvements
Acceptance (1.6%: Total)	1.0%: Aperture and detector alignment	
	1.2%: X-position of photon beam	
Photon conversion in exit window (0.7%: Total)	0.1%: Thickness	5σ obstruction free aperture. Low lumi runs with coincidences of low-Q ² tagger and pair spec
	0.3%: chemical composition	
	0.6%: photon conversion cross section	
RMS-cut correction (0.5%: Total)	Rejection of proton gas interactions	Greatly reduced for ePIC – trackers with good pointing resolution
Total	1.8%	

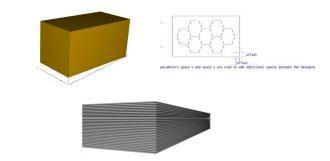
 ${\scriptstyle \circ}$ With reductions, 1% absolute lumi precision within reach

Stephen JD Kay

University of York

24/07/23

22


Luminosity Requirements and Systematics

• Latest design - spaghetti calorimeter (fiber based)

University of York

• Inclined to avoid events directly hitting (and propagating along) direction of fiber

5 degree

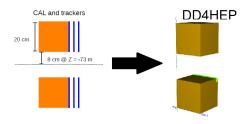
24/07/23

23

20

Figures - Yasir Ali, AGH UST, Krakow (modified)

Stephen JD Kay

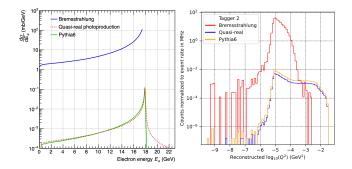

Pair Spectrometer - Calorimeters

Stephen JD Kay

- Calorimeter is fairly simple design
 - ${\ensuremath{\,\circ\,}}$ Two ${\ensuremath{\,\sim\,}} 20 {\rm cm^3}$ calorimeters
 - $\, \bullet \,$ Vertically separated from direct $\gamma, \, \pm 5 \sigma$

University of York

- Current <u>baseline</u> design in ePIC DD4HEP simulation uses segmented PbWO₄ calorimeters
- See talk by Aranya Giri at 11:40 on 23/07/24 for more info and the latest on simulations!



24/07/23

24

Low Q^2 Tagger - Quasi Real Photoproduction

Clean photoproduction signal over a limited region
 10⁻³ < Q² < 10⁻¹ (GeV/c²)

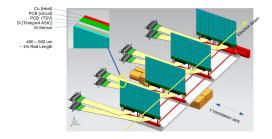
Stephen JD Kay

University of York

24/07/23

25

Low Q^2 Tagger - Detail


 $\,$ 4 tracking layers per station, \sim 30 cm apart

University of York

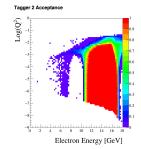
- Timepix4 + Si hybrids, 55x55 μm pixels, 448x512 pixels per sensor (6.94 cm²)
- 2 ns timing resolution

Stephen JD Kay

 $\,$ o Singles rate capability high, > 20 kHz per 55 μm pixel

24/07/23

26


Low Q^2 Tagger - Acceptance

12 14 16 18

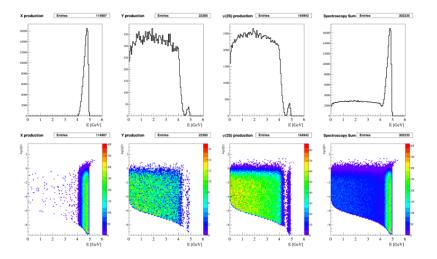
Electron Energy [GeV]

Tagger 1 Acceptance

 $Log(Q^2)$

Acceptance including double counting

Stephen JD Kay


University of York

0.2

24/07/23

27 / 20

Far Backwards - Physics, Spectroscopy Distributions

Figures - D. Glazier, University of Glasgow

Stephen JD Kay University of York

24/07/23

28