The ePIC Forward Hadronic Calorimeter - design and performance -

Particle Flow with HCals at the EIC

Particle flow:

 Combination of all available detector information for particle reconstruction
 → e.g. tracking and ECals for electrons, tracking and all

calorimeters for hadrons

 Reconstructed energy or lack of energy deposit provide valuable information

Jet reconstruction:

- Large physics program with inclusive jets at EIC
 - \rightarrow high energetic jets in forward region $\eta > 1.5$
- Jet energy scale and resolution rely on full particle flow
 - \rightarrow high energetic hadrons constrained by HCals (focus on neutral hadrons)

Hadron/Lepton PID:

- Hadrons on average only leave MIP energy in ECals
 → energy/momentum constrained by tracking and HCals
- Neutron detection only possible with HCals in ePIC
- Muon PID possible depending on HCal design

Forward HCal - considerations

Shower separation at high η

Integration and services July 23, 2023

Acceptance limitations

N. Schmidt (ORNL)

HCal technology catalogue

ECCE G4 simulation

Dual-Readout Inlay

2.55 < n < 3.98

1 / VE (GeV)

Sampling calorimeter

- ightarrow Zeus Uranium-Sci calorimeter best-in-class with $\sigma_E/E \propto 35\%/\sqrt{E}$
- \rightarrow performance depending on material Z (more is better)
- \rightarrow typically 3–20mm thick absorbers with 2.5–4mm thick scintillator plates

Dual readout calorimeter

- ightarrow projective approach similar to IDEA ($\sigma/E=11\%/\sqrt{E}\oplus 0.8\%$)
- ightarrow various absorber and fiber arrangements possible
- \rightarrow option as possible high η inlay
- \rightarrow machine learning approach necessary for high granularity clusterization

• CherenkovScintillation (CS) Glass

- \rightarrow Dual-readout alternative with separate readout of C and S light
- \rightarrow R&D necessary for sufficient UV C-light transparency
- \rightarrow low production cost

π[±] ······ σ/F = 27.2/√F ⊕ 1.0

 Ωe^{\pm} $m \sigma/F = 14.0/\sqrt{F} \oplus 0.4$

HCal: $\sigma/E = (35-50)/\sqrt{E} \oplus (7-10)$ ECal: $\sigma/E = (7-10)/\sqrt{E} \oplus (1-3)$

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

VR requirements

ш

ePIC LFHCAL design

LFHCAL = Longitudinally-separated Forward Hadronic CALorimeter

- Module structure containing 8 tower segments each
 - \rightarrow 5 \times 5 \times 140 cm 3 tower dimensions
 - ightarrow approximately 6–7 λ/λ_0 depth
- Longitudinal separation into 7 segments
 - \rightarrow each containing 10 absorber (1.6cm) and 10 scintillator (4mm) tiles
 - \rightarrow pre-shower segment with tungsten absorber instead of steel
- Acceptance of $1.1 < \eta < 3.2$ $\rightarrow z_{\min} = 3.6$ m, 20 < R < 270cm
- Readout via SiPM on tile and small flex PCB → summing signals in each longitudinal segment
- Flux return for magnet and support structure for forward ECal
- Upgrade path with individual tile readout

ePIC LFHCAL performance and PID

- High granularity eventually allows for detailed shower studies
 ML-based approach for shower separation being studied
- LFHCAL fulfills YR performance requirements:
 - \rightarrow ePIC simulation $\sigma/E=$ 44%/ $\sqrt{E}\oplus$ 5.5%
 - \rightarrow testbeam of prototype planned within FY24
- Good position resolution due to granularity \rightarrow matching of tracks to individual z-segments possible

Muon PID as application of segmentation:

- \rightarrow muons generate MIP signal in crossed scintillator tiles
- \rightarrow PID performance improves with increasing *z*-segmentation
- \rightarrow requirement of more than 80% matched segments provides strong muon PID

ePIC HCal Insert design

HCal Insert

~60x60 cm

- Design inspired by CALICE calorimeter at the future ILC
 - \rightarrow SiPM on tile and high granularity approach
 - \rightarrow idea to provide 5D shower information (position, energy, and time)
- Hexagonal scintillator plates sandwiched between steel absorbers plates
 - \rightarrow layer-dependent granularity (1–7: 9cm², 8–14: 25cm², 15–50: 36cm²)
- Staggering of layers for improved resolution
- Distance to be ampipe minimized for largest possible acceptance \rightarrow 3.2 < η < 4.0 (14.6 < R < 30 cm), tail to even higher η

dowel ni

ePIC HCal Insert performance

- Clusterizer not yet developed
 - \rightarrow performance studies based on summed hit information
 - \rightarrow ML-based approach being studied
- Fulfills YR performance requirements
 - \rightarrow in agreement with CALICE test-beam data
- ${\ensuremath{\, \bullet \, }}$ Strong shower leakage reduction at high η compared to standalone LFHCAL
- ${\mbox{\circle*{-}}}$ Further performance improvements with timing information possible ${\mbox{\rightarrow}}$ to be studied in combination with ML-clusterizer

R&D efforts towards prototype manufacturing

OAK

- Significant efforts for scintillator tile manufacturing
 - \rightarrow machining difficulties with chipped edges or crazing
 - \rightarrow uneven tiles from injection molding
 - \rightarrow several challenges already overcome
- Light yield of various tile prototypes being studied → dark box construction and cosmic data taking employed
 - \rightarrow different SiPM's being tested

- Overview of forward HCal systems in ePIC shown \rightarrow LFHCAL and high- η inlay
- Detailed detector design of both systems presented
- First performance results of simulation and test beams \rightarrow Yellow Report requirements met by both systems
- Path forward and R&D efforts presented with current challenges

Forward hadronic calorimeter detector systems on track for ePIC!