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Particle Flow with HCals at the EIC
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Particle flow:
Combination of all available detector
information for particle
reconstruction
→ e.g. tracking and ECals for
electrons, tracking and all
calorimeters for hadrons

Reconstructed energy or lack of
energy deposit provide valuable
information

Jet reconstruction:
Large physics program with inclusive
jets at EIC
→ high energetic jets in forward
region η > 1.5

Jet energy scale and resolution rely
on full particle flow
→ high energetic hadrons
constrained by HCals (focus on
neutral hadrons)

Hadron/Lepton PID:
Hadrons on average only leave MIP
energy in ECals
→ energy/momentum constrained
by tracking and HCals

Neutron detection only possible with
HCals in ePIC

Muon PID possible depending on
HCal design
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Forward HCal - considerations

γ n
π+

EJET = ETrack + EECal + EHCal

Optimization for particle flow
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2250 GeV×FHCAL, e-p: 10

Shower separation at high η

Acceptance limitations Integration and services
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HCal technology catalogue
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YR requirements:
 (7-10)⊕ E =  (35-50)/E/σHCal: 

 (1-3)⊕ E =  (7-10)/E/σECal: 

CSGlass prototypesCSGlass prototypes Capillary-tube prototypeCapillary-tube prototype

Sampling calorimeter
→ Zeus Uranium-Sci calorimeter best-in-class with σE/E ∝ 35%/

√
E

→ performance depending on material Z (more is better)
→ typically 3–20mm thick absorbers with 2.5–4mm thick scintillator plates

Dual readout calorimeter
→ projective approach similar to IDEA (σ/E = 11%/

√
E ⊕ 0.8%)

→ various absorber and fiber arrangements possible
→ option as possible high η inlay
→ machine learning approach necessary for high granularity clusterization

CherenkovScintillation (CS) Glass
→ Dual-readout alternative with separate readout of C and S light
→ R&D necessary for sufficient UV C-light transparency
→ low production cost
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ePIC LFHCAL design
LFHCAL = Longitudinally-separated Forward Hadronic CALorimeter
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16mm tungsten plates

4 mm scin�llator �les16mm steel plates
transfer PCB

8M tower module  - 20 cm x 10 cm x 140 cm
- 8 5 cm x 5 cm LFHCal towers
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detailed 8M �le assembly

Module structure containing 8 tower segments each
→ 5 × 5 × 140cm3 tower dimensions
→ approximately 6–7λ/λ0 depth

Longitudinal separation into 7 segments
→ each containing 10 absorber (1.6cm) and 10 scintillator (4mm) tiles
→ pre-shower segment with tungsten absorber instead of steel

Acceptance of 1.1 < η < 3.2
→ zmin = 3.6m, 20 < R < 270cm

Readout via SiPM on tile and small flex PCB
→ summing signals in each longitudinal segment

Flux return for magnet and support structure for forward ECal

Upgrade path with individual tile readout
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ePIC LFHCAL performance and PID
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→ ML-based approach for shower separation being studied

LFHCAL fulfills YR performance requirements:

→ ePIC simulation σ/E = 44%/
√
E ⊕ 5.5%

→ testbeam of prototype planned within FY24

Good position resolution due to granularity
→ matching of tracks to individual z-segments possible

Muon PID as application of segmentation:
→ muons generate MIP signal in crossed scintillator tiles
→ PID performance improves with increasing z-segmentation
→ requirement of more than 80% matched segments provides
strong muon PID
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ePIC HCal Insert design

Design inspired by CALICE calorimeter at the future ILC
→ SiPM on tile and high granularity approach
→ idea to provide 5D shower information (position, energy,
and time)

Hexagonal scintillator plates sandwiched between steel
absorbers plates
→ layer-dependent granularity (1–7: 9cm2, 8–14: 25cm2,

15–50: 36cm2)

Staggering of layers for improved resolution

Distance to beampipe minimized for largest possible acceptance
→ 3.2 < η < 4.0 (14.6 < R < 30cm), tail to even higher η
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ePIC HCal Insert performance
Clusterizer not yet developed
→ performance studies based on summed hit information
→ ML-based approach being studied

Fulfills YR performance requirements
→ in agreement with CALICE test-beam data

Strong shower leakage reduction at high η compared to standalone
LFHCAL

Further performance improvements with timing information possible
→ to be studied in combination with ML-clusterizer
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R&D efforts towards prototype manufacturing

Significant efforts for scintillator tile manufacturing
→ machining difficulties with chipped edges or
crazing
→ uneven tiles from injection molding
→ several challenges already overcome

Light yield of various tile prototypes being studied
→ dark box construction and cosmic data taking
employed
→ different SiPM’s being tested

Strong radiation environment in forward region
→ irradiation tests for tiles and sensors planned
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Summary

Forward hadronic calorimeter detector systems on track for ePIC!

Overview of forward HCal systems in ePIC shown
→ LFHCAL and high-η inlay

Detailed detector design of both systems presented

First performance results of simulation and test beams
→ Yellow Report requirements met by both systems

Path forward and R&D efforts presented with current challenges
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