

DVCS measurements at EIC

Niveditha R 23/07/2023

Electron-Ion Collider User Group Meeting

Understanding the structure of nucleon Elastic Scattering

 $Q^2 = 4EE'\sin^2\left(\frac{\theta}{2}\right).$

- gives access to transverse spatial distribution of partons
- Cross-section of this scattering, considering an extended nucleon is given by

$$\left(\frac{d\sigma}{d\Omega}\right)_{Rosenbluth} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left\{F_1^2(Q^2) + \frac{Q^2}{4M^2} \left[F_2^2(Q^2) + 2\left(F_1(Q^2) + F_2(Q^2)\right)^2 \tan^2\left(\frac{\theta}{2}\right)\right]\right\}$$

F1 and F2 are Dirac and Pauli form factors which give the distribution of electric charge and current inside a nucleon.

Understanding the structure of nucleon Deep-Inelastic Scattering (in briet frame)

 $Q^2 = 4EE'\sin^2\left(\frac{\theta}{2}\right).$

- gives access longitudinal momentum distribution of partons
- Cross-section of this scattering is given by

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2 \cos^2\left(\frac{\theta}{2}\right)}{4E^2 \sin^4\left(\frac{\theta}{2}\right)} \left(\frac{F_2(x_{Bj}, Q^2)}{\nu} + \frac{2}{M}F_1(x_{Bj}, Q^2) \tan^2\left(\frac{\theta}{2}\right)\right).$$

F1 and F2 here are the structure functions of a nucleon and they depend on x and Q2.

Understanding the structure of nucleon Deep-Inelastic Scattering (in briet frame)

- The virtual photon can be thought of to scatter off of a single parton carrying longitudinal momentum fraction x
- Cross-section is the

$$F_2(x_{Bj}) = x_{Bj} \sum e_i^2 q_i(x_{Bj}),$$

where e_i is the charge of the parton i, in units of the proton charge, and $qi(x_{Bj})$ is the density of partons i with longitudinal momentum fraction x_{Bj} . These functions qi are called Parton Distribution Functions (PDFs).

Elastic Scattering

Deep Inelastic Scattering

Form Factors

Parton Distribution Functions

Transverse spatial distribution of partons

Longitudnal momentum distribution of partons

Elastic Scattering

Deep Inelastic Scattering

Form Factors

Parton Distribution Functions

Transverse spatial distribution of partons

Longitudnal momentum distribution of partons

Genralised Parton Distributions

Hard Exclusive Processess

GPDs gives us the probability to find a quark which carries longitudinal momentum fraction x at a transverse position \mathbf{b}_{\perp} in a nucleon

Parton Distribution Functions

Transverse spatial distribution of partons Longitudnal momentum distribution of partons

longitudinal momentum fraction x at transverse position \mathbf{b}_{\perp}

Genralised Parton Distributions

Hard Exclusive Processess

interactions where the struck nucleon remains intact and final state particles are detected

*In such analysis, the final state particles are the deflected electron, deflected nucleon and other particles of interest (γ , π 0, φ).

Hard Exclusive Processess

In the limit of high energy and high momentum transfer, these can be factorized into (i) calculable crosssection of interaction between the virtual photon and quark and (ii) the nucleon itself described by GPDs.

Studying DVCS process

Studying DVCS process

Studying DVCS process

Beam Spin Assymmetry

Plotting this in bins of φ_{trento}

 φ_{trento} = Angle between electron plane (electron and virtual photon) and hadron plane (neutron and phi)

Modulation in BSA gives access to the spatial distribution of Quarks and Gluons in a nucleon

 $0.1 < x_b < 0.7$

Spatial topology of DVCS at EIC and ePIC detector

Spatial topology of DVCS at EIC and ePIC detector

Spatial topology of DVCS at EIC and ePIC detector

How do I get this typical topology? From a generator which has inputs from data available thus far.

Studying excluisve physics observables

0.2991

Contact me – nivram@cea.fr

Join eA Study group

Join Exclusive physics working group

Thank you for your attention