Lepton-hadron collisions in MadGraph5_aMC@NLO

Laboni Manna

Doctoral student Warsaw University of Technology On behalf of

Daniel Kikola (Warsaw University of Technology), Olivier Mattelaer (UCLouvain), Jean-Philippe Lansberg (IJCLab- Paris-Saclay U. - CNRS), Carlo Flore (Torino University and INFN), Hua-sheng Shao (LPTHE, Sorbonne U-CNRS), Aleksander Kusina (IFJ PAN Krakow)

EIC Early Career (EC) Workshop 2023

Theoretical Overview

Parton distribution functions (PDFs) $= f(x, \mu_F^2) =$ momentum distribution of the quarks and gluons within a hadron. In collinear factorization,

$$\sigma_{ab} = \sum_{a,b} \int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} \int d\Phi_{f} f_{a}(x_{1},\mu_{F}^{2}) f_{b}(x_{2},\mu_{F}^{2}) \frac{d\hat{\sigma}_{ab}(x_{1},x_{2},\mu_{F}^{2},\Phi_{f})}{dx_{1} dx_{2} d\Phi_{f}}$$

 $d\hat{\sigma}$ = Partonic cross section, calculable within perturbation theory. The partonic cross section can be expanded as:

$$\hat{\sigma} = \underbrace{\sigma^{Born}\left(1 + \frac{\alpha_s}{2\pi}\sigma^1 + ...\right)}_{\text{NLO}}$$

* LO = Leading order, NLO = Next-to-leading order and so on.

1

Introduction to MadGraph5_aMC@NLO

- It's an automated matrix element generator.
- It can support a huge class of particle physics models.
- The program can calculate amplitudes at the tree and one loop levels for arbitrary processes.

Initially, $MadGraph5_aMC@NLO(MG5aMC)$ was developed for symmetric collisions.

Missing: asymmetric collisions at next-to-leading (NLO)!

Electron-proton collisions

I) Photoproduction :

Electron-proton processes are traditionally classified according to the virtuality (Q²) of the photon i.e four-momentum transfer to the photon from the electron (incoming outgoing), $Q^2 = -q^2 = -(k-k')^2$

Photon is nearly on mass shell.

 $Q^{2} < m_{H}$

Validation of LO Results with FMNR

Good agreement for Charm and Beauty Quark photoproduction!

*HO = Helac-Onia

Validation of NLO result with FMNR program

Validation of NLO result with FMNR program

Possibility in Future Experiments

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preliminary Results

Transverse momenta distribution of Beauty and Charm quark

▲ 西部

Preliminary Results

Rapidity distribution of Beauty and Charm quark

10/20

< □ > < /□ >

LO DIS + hadronization (work in progress):

Comparison between the transverse momentum spectrum of D^0 mesons produced from DIS with that of charm quarks. (preliminary result)

Laboni Manna (WUT)

11/20

- Our implementation of photoproduction at NLO in MG5 validation is completed and will be available very soon for users.
- The validation of DIS at LO and photoproduction at LO with hadronization is in progress.
- We can do UPC study as well.

MG5_aMC capabilities :

Mode	lo (SM)	LO (ep collision) (DIS+Direct Photoproduction)	NLO (Direct Photoproduction)	NLO (Resolved Photoproduction)	nlo (dis)
Fixed order	√√		√	\checkmark	In progress
Parton shower	$\sqrt{}$	\checkmark	Development will be starting soon	Not implemented yet	Development will be starting soon

э

< 47 ▶

3 K K 3 K

- Future work for electron-proton collisions,
 - Develop interface for photoproduction and DIS at NLO + PS.
 - Extend our electron-proton work with electron-nucleus collisions by including nuclear PDFs.

Thank you for your attention!

< 行い

Part of this work has received funding from the European Union's Horizon 2020 research and innovation programme as part of the Marie Skłodowska-Curie Innovative Training Network MCnetITN3 (grant agreement no. 722104). The research was funded by POB HEP of Warsaw University of Technology within the Excellence Initiative: Research University (IDUB) programme.

backup slides

3

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

NLO calculation

$$\sigma_{\rm NLO} = \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \mathcal{V} + \int d\Phi^{(n+1)} \mathcal{R}$$
$$= \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \left[\mathcal{V} + \int d\Phi^{(1)} S \right] + \int d\Phi^{(n+1)} \left[\mathcal{R} - S \right]$$

The subtraction counterterm S should be chosen:

- It exactly matches the singular behavior of real ME
- It can be integrated numerically in a convenient way
- It can be integrated exactly in the d dimension
- It is process independent (overall factor times Born ME)

Photoproduction

DIS	6	Photoproduction
Photon is highly virtual		Photon is quasi-real
Scattered e ⁻ observed		Scattered e- not observed due to low virtuality
Direct		Direct & resolved photon contribution due to partonic structure of photon

NLO calculations and approaches:

NLO calculations are performed in several schemes. All approaches assume a scale to be hard enough to apply pQCD and to guarantee the validity of the factorization theorem.

- The massive approach is a fixed order calculation (in α_s) with $m_Q \neq 0$
- The massless approach sets $m_Q = 0$. Therefore the heavy quark is treated as an active flavor in the proton.
- In a third approach (FONLL) the features of both methods are combined. The matched scheme adjusts the number of partons, nf, in the proton according to the relevant scale.
- Our work is focused on the first approach, massive heavy quark.

Validation of LO result

Comparison between pseudorapidity distribution of bottom quark pair production cross section obtained from MG5 at LO (FLO) and with another LO event generator called Helac-onia (HO).

	MG5(nb) (LO)	MG5(nb) (FLO)	HO (nb) (LO)
cross section	$3.34 \pm 4.4 imes 10^{-3}$	$3.34\pm19\times10^{-3}$	$3.34 \pm 10.08 \times 10^{-3}$

Lepton-hadron collisions in MadGraph5

20 / 20