

Irradiation and annealing studies on SiPM sensors for the ePIC-dRICH detector

Nicola Rubini INFN Bologna, University of Bologna 23 July 2023

Radiation damage of SiPM - Temp

Cons

- 1. <u>High dark count rate</u> at room temperature
- 2. <u>High radiation</u> <u>sensitivity</u>

Acting on the operational temperature one can lower DCR up to 3-4 orders of magnitude from room temperature to -30C

ArXiV 1805.07154 [physics.ins-det]

EICUG 2023

Radiation damage produces an increase in DCR up to a disruption of the baseline (no single photon detection possible). Low temperature mitigates this effect

Radiation damage of SiPM - Annealing

Radiation damage of SiPM - Timing

LED Setup

Cons

- 1. High dark count rate at room temperature
- 2. <u>High radiation</u> <u>sensitivity</u>

Timing cuts manage to reduce the window where we look for the signal

This allows the background reduction, i.e. mitigates the effects of irradiation damage degradation

EICU&

Sensors characterisation 2021

Climatic chamber low temperature of operations (-30C) 2x 40-channel multiplexers fully automated board measurement Source meter for measurements

EICU&

Sensors characterisation 2022

Climatic chamber low temperature of operations (-30C) 2x ALCOR-based front-end chain fully automated measurement FPGA (Xilinx) for readout

ECUE

EICUG 2023

Sensors characterisation 2022

Climatic chamber low temperature of operations (-30C) Arbitrary function generator LED impulse for light response test Arbitrary function generator LASER impulse for light response test 2x ALCOR-based front-end chain fully automated measurement FPGA (Xilinx) for readout

Annealing of sensors (2023 Camp.)

Fully automated system w/ PID feedback for long unsupervised annealing, with both reverse and forward in parallel

Irradiation campaigns at

2021 Campaign

2022 Campaign

Different radiation levels to evaluate recover potential

Few full boards irradiated with 10⁹ 1-MeV N_{ac}/cm² and multiple times w/ test with online annealing

Many board irradiated with 10⁹ 1-MeV N_{eg}/cm² multiple times w/ test with multiple annealing procedures

2023 Campaign

Thorough understanding of the effect of proton irradiation on many different sensors, selecting the best sensors in the process

Breakdown voltage

NEW sensors have a shift of ~1% (500mV) on the breakdown voltage. This is not consistent with literature and results of 2021 campaign

Breakdown voltage

EICUG 2023

Breakdown voltage

Using the ratio of sensor gain before and after irradiation as a function of overvoltage measured on the irradiated IV, one can see this is the real Vbd

There is literature on the erroneous measurement of Vbd in NEW sensors without light (low current)

Nuclear Inst. and Methods in Physics Research, A 1040 (2022) 167284

Fig. 7. Example of estimated breakdown voltage values for the NUV-HD SiPM with 35 μ m cell pitch, obtained with the different estimation methods in dark (D) and light (L) conditions at -20 °C. Error bars identify the spread of values obtained among repeated measurements.

Breakdown voltage

HAMA S14161-3050

A relatively small difference (~500mV) in the Vbd measurement can generate a significant effect in the current and in general in overvoltage quantities

The ratio for the Hamamatsu S14161-3050 of the current as a function of the overvoltage, when the Vbd is measured from the NEW IV w.r.t. when it is measured from the IRR IV generates fluctuations of up to 50%

Current recovery after annealing cycles (2021 camp.)

DCR recovery after annealing cycles (2021 camp.)

Direct current annealing (2022 camp.)

Total: 10⁹ Time: 15min Very promising technique! Does not reach oven recovery, but:

- 100 times faster
- Can be done in-situ
- Repeated many times

EICUG 2023

EICUG 2023

Light response (2022 camp.)

Test beam (2022 camp.)

Irradiated and annealed sensors managed

to see a ring (w/ timing cut for bkg

reduction)

2022 Campaign also saw a very fructuous Test Beam @CERN T10 PS beam line

DCR and Dark current (2023 camp.)

Summary

- A three years effort of characterisation, irradiation and annealing to explore different sensors and their behaviour in the foreseen circumstances
- Different levels of irradiation have been analysed in the 2021 campaign to understand the effects of low to high radiation damage and potential for recovery through annealing
- online (small irradiation-annealing cycles) have been tested for in-situ solutions in the 2022 campaign, with a start on the light response using a LED and a on-field test w/ a Test Beam @CERN
- three most promising candidates are under test in the 2023 irradiation campaign, with a focus on different annealing solutions to define the proposed sensor to be used in the dRICH
- We have a reliable setup that is able to thoroughly caracterise sensors in many ways consistently

Thank you!

