Impact of Double DVCS in current and new experiments

VÍCTOR MARTÍNEZ-FERNÁNDEZ

PhD STUDENT AT THE NATIONAL CENTRE FOR NUCLEAR RESEARCH (NCBJ, WARSAW, POLAND)

Work in collaboration with: Katarzyna Deja (NCBJ) Bernard Pire (CPHT) Paweł Sznajder (NCBJ) Jakub Wagner (NCBJ)

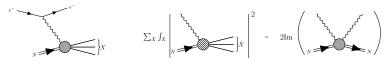
Work published in: PRD 107 (2023), no. 9, 094035, hep-ph/2303.13668

Outline

- Preliminaries: DIS vs DVCS
- Double deeply virtual Compton scattering (DDVCS)
 - Why DDVCS?
 - Formulation à la Kleiss & Stirling (KS)
 - Tests of our KS-based formulation
 - Observables and MC simulations
- Summary and conclusions

Deep Inelastic Scattering (DIS)

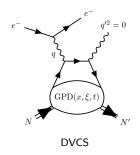
- R. Hofstader & R. W. McAllister, Phys. Rev. **98**, 217 (1955) \rightarrow elastic scattering \rightarrow proton is an extended object of radius $\sim 10^{-13}$ cm
- M. Breidenbach et al., PRL **23**, 935 (1969) \rightarrow DIS \rightarrow proton is a composite object



DIS (left), optical theorem (right - sum over X states = inclusiveness)

$$\begin{split} \sigma_{\gamma N \to X} = & \sum_f \int_0^1 dx \ \sigma_{\gamma \mathfrak{q}_f \to X}(x) \mathrm{PDF}_f(x), \quad f = \mathrm{flavor} \\ \mathrm{PDF}_f(x) = & \frac{1}{2} \int \frac{dz^-}{2\pi} \mathrm{e}^{\mathrm{i} x \hat{p}^+ z^-} \langle N | \bar{\mathfrak{q}}_f(-z/2) \gamma^+ \mathcal{W}[-z/2,z/2] \mathfrak{q}_f(z/2) |N \rangle \Big|_{z_\perp = z^+ = 0} \end{split}$$

Deeply Virtual Compton Scattering (DVCS)



- In the late '90s, Ji, Müller and Radyushkin introduced the Generalized Parton Distributions (GPDs) through DVCS process
- GPDs enter amplitude at LO via CFF:

$$\text{CFF}_{\text{DVCS}} \sim \text{PV}\left(\int_{-1}^{1} dx \frac{1}{x-\xi} \text{GPD}(x,\xi,t)\right) - \int_{-1}^{1} dx \ i\pi \delta(x-\xi) \text{GPD}(x,\xi,t) + \cdots$$

Generalized Parton Distribution

GPD

Generalized Parton Distribution \approx "3D version of a PDF (Parton Distribution Function)." With x the fraction of the hadron's longitudinal momentum carried by a quark:

$$\begin{split} \mathrm{GPD}_f(x,\xi,t) &= \tfrac{1}{2} \int \tfrac{dz^-}{2\pi} e^{ix\bar{p}^+z^-} \langle N'(p') | \bar{\mathfrak{q}}_f \left(-\tfrac{z}{2} \right) \gamma^+ \mathcal{W}[-z/2,z/2] \mathfrak{q}_f \left(\tfrac{z}{2} \right) | N(p) \rangle \Big|_{z_\perp = z^+ = 0} \\ t &= \Delta^2 = (p'-p)^2, \quad \xi = -\tfrac{\bar{q}\Delta}{2\bar{p}\bar{\mathfrak{q}}}, \quad \rho = \tfrac{-\bar{q}^2}{2\bar{p}\bar{\mathfrak{q}}}, \quad \bar{\mathfrak{q}} = \tfrac{q+q'}{2}, \quad \bar{p} = \tfrac{p+p'}{2} \end{split}$$

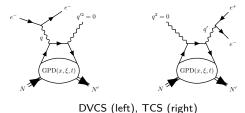
Importance

- Connected to QCD energy-momentum tensor, and so to spin.
 GPDs are a way to address the hadron's spin puzzle
- Tomography: distribution of quarks in terms of the longitudinal momentum and in the transverse plane

$$q(x,\mathbf{b}_{\perp}) = \int \frac{d^2 \mathbf{\Delta}}{4\pi^2} e^{-i\mathbf{b}_{\perp}\cdot\mathbf{\Delta}} H^q(x,0,t=-\mathbf{\Delta}^2) \leftrightarrow H^q$$
: a particular GPD

Limitations of DVCS

• **Problem:** currently, GPDs are accessible experimentally in processes such as deeply virtual (DVCS) and timelike Compton scattering (TCS), but the LO amplitudes are restricted to the line $x=\pm \xi$



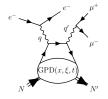
GPDs enter amplitude at LO via CFF:

$$\text{CFF}_{\text{DVCS}} \, \sim \, \text{PV} \left(\int_{-1}^1 dx \, \frac{1}{x-\xi} \, \text{GPD} \big(x, \xi, t \big) \right) - \int_{-1}^1 dx \, \, i \pi \delta \big(x - \xi \big) \text{GPD} \big(x, \xi, t \big) + \cdots$$

Similarly for TCS with $\xi \to -\xi$

Need to go beyond: Double DVCS (DDVCS)

• **Solution by DDVCS:** the extra virtuality allows for the introduction of a new (generalized) Björken variable ρ so that we can access GPDs for $x = \rho \neq \xi$



Double DVCS (DDVCS)

GPDs enter amplitude at LO via CFF:

$$\text{CFF}_{\text{DDVCS}} \sim \text{PV}\left(\int_{-1}^{1} dx \frac{1}{x-\rho} \text{GPD}(x,\xi,t)\right) - \int_{-1}^{1} dx \ i\pi \delta(x-\rho) \text{GPD}(x,\xi,t) + \cdots$$

$$\rho = -\frac{\bar{q}^2}{2\bar{p}\bar{q}}, \quad \xi = \frac{-\bar{q}\Delta}{2\bar{p}\bar{q}}$$

Original papers in DDVCS: Belitsky & Muller, PRL 90, 022001 (2003); Guidal & Vanderhaeghen, PRL 90, 012001 (2003); Belitsky & Muller, PRD 68, 116005 (2003)

Formulation à la Kleiss-Stirling

- In the view of new experiments, revisiting DDVCS is timely:
 PRD 107 (2023), no. 9, 094035 (our work)
- Rederivation of DDVCS' formulae via Kleiss-Stirling's methods:
 - Amplitudes as complex-numbers
 - 2 scalars as building blocks. For a and b as lightlike vectors:

$$s(a,b) = \bar{u}(a,+)u(b,-) = -s(b,a)$$

$$t(a,b) = \bar{u}(a,-)u(b,+) = [s(b,a)]^*$$

$$s(a,b) = (a^2 + ia^3)\sqrt{\frac{b^0 - b^1}{a^0 - a^1}} - (a \leftrightarrow b)$$

Kleiss & Stirling, Nuclear Physics B262 (1985) 235-262

DDVCS à la Kleiss-Stirling

DDVCS amplitude:

$$i\mathcal{M}_{\mathrm{DDVCS}} \! = \! \! \frac{-ie^4}{(Q^2 - i0)(Q'^2 + i0)} \left(i\mathcal{M}_{\mathrm{DDVCS}}^{(V)} \! + \! i\mathcal{M}_{\mathrm{DDVCS}}^{(A)} \right)$$

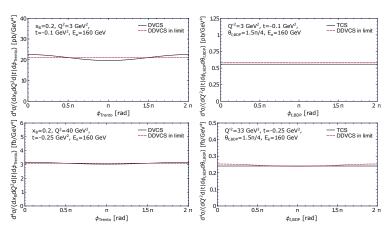
Vector contribution:

$$\begin{split} i\mathcal{M}_{\mathrm{DDVCS}}^{(V)} = & -\frac{1}{2} \left[f(s_{\ell}, \ell_{-}, \ell_{+}; s, k', k) - g(s_{\ell}, \ell_{-}, n^{\star}, \ell_{+}) g(s, k', n, k) - g(s_{\ell}, \ell_{-}, n, \ell_{+}) g(s, k', n^{\star}, k) \right] \\ & \times \left[(\mathcal{H} + \mathcal{E}) [Y_{s_{2}s_{1}} g(+, r'_{s_{2}}, n, r_{s_{1}}) + Z_{s_{2}s_{1}} g(-, r'_{-s_{2}}, n, r_{-s_{1}})] - \frac{\mathcal{E}}{M} \mathcal{J}_{s_{2}s_{1}}^{(2)} \right] \end{split}$$

Axial contribution:

$$i\mathcal{M}_{\mathrm{DDVCS}}^{(A)} = \frac{-i}{2} \epsilon_{\perp}^{\mu\nu} j_{\mu}(s_{\ell}, \ell_{-}, \ell_{+}) j_{\nu}(s, k', k) \left[\widetilde{\mathcal{H}} \mathcal{J}_{s_{2}s_{1}}^{(1,5)+} + \widetilde{\mathcal{E}} \frac{\Delta^{+}}{2M} \mathcal{J}_{s_{2}s_{1}}^{(2,5)+} \right]$$

DVCS & TCS limits of DDVCS



Comparison of DDVCS and (left) DVCS and (right) TCS cross-sections for pure VCS subprocess. **GK model for GPDs.**

Trento: PRD 70, 117504 (2004); BPD: EPJC23, 675 (2002)

Observables: cross-section

For unpolarized beam and target:

$$\begin{split} &\sigma_{UU}(\phi_{\ell,\mathrm{BDP}}) {=} \int_0^{2\pi} d\phi \int_{\pi/4}^{3\pi/4} d\theta_{\ell,\mathrm{BDP}} \sin\theta_{\ell,\mathrm{BDP}} \\ &\times \left(\frac{d^7\sigma^{\rightarrow}}{dx_B dQ^2 dQ'^2 d|t|d\phi d\Omega_{\ell,\mathrm{BDP}}} {+} \frac{d^7\sigma^{\leftarrow}}{dx_B dQ^2 dQ''^2 d|t|d\phi d\Omega_{\ell,\mathrm{BDP}}} \right) \end{split}$$

Cosine components:

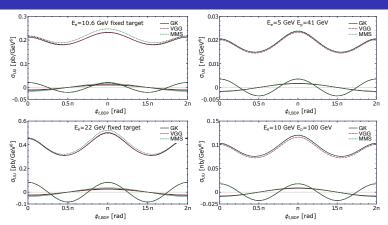
$$\sigma_{UU}^{\cos\left(n\phi_{\ell,\mathrm{BDP}}\right)}\!\!\left(\phi_{\ell,\mathrm{BDP}}\right)\!\!=\!\!M_{UU}^{\cos\left(n\phi_{\ell,\mathrm{BDP}}\right)}\cos\!\left(n\phi_{\ell,\mathrm{BDP}}\right)$$

Cosine moments:

$$M_{UU}^{\cos\left(n\phi_{\ell,\mathrm{BDP}}\right)} \!\!=\! \tfrac{1}{N} \int_0^{2\pi} d\phi_{\ell,\mathrm{BDP}} \cos\!\left(n\phi_{\ell,\mathrm{BDP}}\right) \!\! \sigma_{UU}(\phi_{\ell,\mathrm{BDP}})$$

$$N=2\pi$$
 for $n=0$, $N=\pi$ for $n>0$.

Observables: cross-section



JLab12, JLab20+

EIC 5x41, EIC 10x100

Experiment	Beam energies [GeV]	У	t [GeV ²]	Q^2 [GeV ²]	Q'^2 [GeV ²]
JLab12	$E_e = 10.6, E_p = M$	0.5	0.2	0.6	2.5
JLab20+	$E_e = 22, E_p = M$	0.3	0.2	0.6	2.5
EIC	$E_e = 5, E_p = 41$	0.15	0.1	0.6	2.5
EIC	$E_e = 10, E_p = 100$	0.15	0.1	0.6	2.5

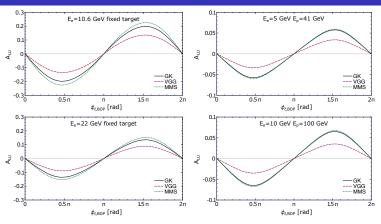
Observables: beam-spin asymmetry

Single beam-spin asymmetry for longitudinally polarized electrons:

$$\begin{split} A_{LU}(\phi_{\ell,\mathrm{BDP}}) &= \frac{\Delta \sigma_{LU}(\phi_{\ell,\mathrm{BDP}})}{\sigma_{UU}(\phi_{\ell,\mathrm{BDP}})} \\ \Delta \sigma_{LU}(\phi_{\ell,\mathrm{BDP}}) &= \int_{0}^{2\pi} d\phi \int_{\pi/4}^{3\pi/4} d\theta_{\ell,\mathrm{BDP}} &\sin \theta_{\ell,\mathrm{BDP}} \\ &\times \left(\frac{d^{7}\sigma^{\rightarrow}}{dx_{B}dQ^{2}dQ^{\prime 2}d|t|d\phi d\Omega_{\ell,\mathrm{BDP}}} - \frac{d^{7}\sigma^{\leftarrow}}{dx_{B}dQ^{2}dQ^{\prime 2}d|t|d\phi d\Omega_{\ell,\mathrm{BDP}}} \right) \end{split}$$

 \bullet We consider $Q'^2>Q^2$: our DDVCS is "more" timelike than spacelike

Observables: beam-spin asymmetry

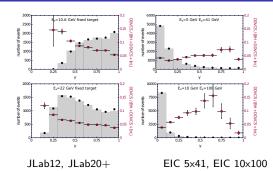


JLab12, JLab20+: up to 15-20%

EIC 5×41, EIC 10×100: 3-7%

Experiment	Beam energies [GeV]	у	t [GeV ²]	Q^2 [GeV ²]	$Q^{\prime 2}$ [GeV ²]
JLab12	$E_e = 10.6, E_p = M$	0.5	0.2	0.6	2.5
JLab20+ EIC	$E_e = 22, E_p = M$ $E_e = 5, E_p = 41$	0.3 0.15	0.2 0.1	0.6 0.6	2.5 2.5
EIC	$E_e = 10, E_p = 100$	0.15	0.1	0.6	2.5

Monte Carlo study: distribution in y



10000 events/distribution. Neither acceptance nor detectors response are taken into account in this study

Experiment	Beam energies [GeV]	Range of $ t $ [GeV ²]	$\sigma _{0 < y < 1}$ [pb]	$\mathcal{L}^{10k} _{0 < y < 1}$ [fb ⁻¹]	y_{\min}	$\sigma _{y_{\min} < y < 1}/\sigma _{0 < y < 1}$
JLab12	$E_e = 10.6, E_p = M$	(0.1, 0.8)	0.14	70	0.1	1
JLab20+	$E_e = 22, E_p = M$	(0.1, 0.8)	0.46	22	0.1	1
EIC	$E_e = 5, E_p = 41$	(0.05, 1)	3.9	2.6	0.05	0.73
EIC	$E_e = 10, E_p = 100$	(0.05, 1)	4.7	2.1	0.05	0.32

■ EpIC MC
■ integrated cross-section
pure DDVCS fraction

Kinematic cuts: $Q^2 \in (0.15, 5) \text{ GeV}^2$ $Q'^2 \in (2.25, 9) \text{ GeV}^2$ $J \text{Lab: } -t \in (0.1, 0.8) \text{ GeV}^2$ $EIC: -t \in (0.01, 1) \text{ GeV}^2$ $\phi, \phi_\ell \in (0.1, 2\pi - 0.1) \text{ rad}$ $\theta_\ell \in (\pi/4, 3\pi/4) \text{ rad}$ $J \text{Lab: } y \in (0.1, 1)$ $EIC: y \in (0.05, 1)$

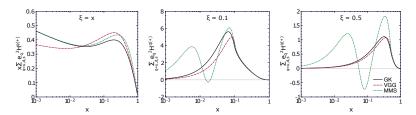
Summary and conclusions

- New analytical formulae for the electroproduction of a lepton pair have been derived.
- It is already implemented in PARTONS and EpIC MC (LO + LT).
- Asymmetries are large enough for DDVCS to be measurable at both current (JLab12) and future (JLab20+, EIC) experiments.
- Addressing GPD model dependence with cross-sections and asymmetries is possible.

Thank you!

Complementary slides

Models for the C-even part of GPD H



Distributions of $\sum_q e_q^2 H^{q(+)}(x,\xi,t)$ at $t=-0.1~{\rm GeV}^2$, where q=u,d,s flavours for (left) $\xi=x$, (middle) $\xi=0.1$ and (right) $\xi=0.5$. The solid black, dashed red and dotted green curves describe the GK, VGG and MMS GPD models, respectively. The C-even part of a given vector GPD is defined as:

 $H^{q(+)}(x,\xi,t) = H^q(x,\xi,t) - H^q(-x,\xi,t)$. The scale is chosen as $\mu_F^2 = 4 \text{ GeV}^2$.