# R&D studies for the EIC Electromagnetic Calorimetry

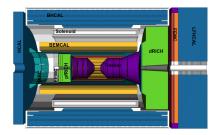
Pilleux Noémie - IJCLab, Paris-Saclay University, France July 23, 2023

Supervisors : Carlos Munoz Camacho and Silvia Niccolai

### Context and motivations

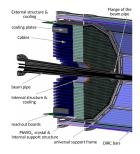
R&D studies for the Electron-Endcap Electromagnetic Calorimeter (EEMC) Nearly all process at the EIC require detection of the scattered *e*<sup>-</sup> Physics goals set the requirements for the EEMC.

- momentum and energy reconstruction
- particle ID


- $\cdot$   $\pi$  /  $e^-$  separation
- $\cdot$  detection of neutral particles
- separation of 2  $\gamma$  in  $\pi_0$  decay ...



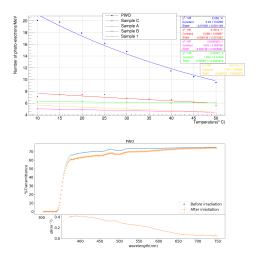
• Excellent energy resolution


| η                                         | -4 to -2 | -2 to -1 | -1 to 1 | 1 to 4 |
|-------------------------------------------|----------|----------|---------|--------|
| $\sigma_E/E \cdot \sqrt{E/1  \text{GeV}}$ | 2%       | 7%       | 10-12%  | 10-12% |

- · Limited space : compact detector
- Radiation hardness : 30 Gy/year
- Intense magnetic field
- Large dynamic range : ~50 MeV to ~15 GeV



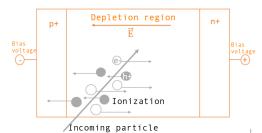
- $\cdot \simeq 3000 \ PbWO_4 \ crystals.$
- Readout by SiPMs.
- Thin supporting and cooling structure to limit dead space.






# Scintillating material

PWO crystals are the best candidates to meet the stringent requirements


- $X_0 = 8.9 mm$
- Can detect energies as low as 20 MeV photons
- Tested to be radiation hard

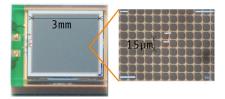


# SiPM readout



# SiPMs, basic principle




Avalanche photodiode (APD) increasing  $V_{bias} \rightarrow e^-/h^+$  have sufficient energy to ionize atoms  $\rightarrow$  avalanche phenomenon  $\rightarrow$  higher signal level

GAPD (Geiger mode)

increasing  $V_{bias} \rightarrow e^-/h^+$  multiply faster than they can be extracted  $\rightarrow$  digital photodetector

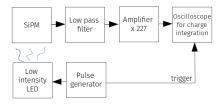
SiPM a matrix of GAPDs !

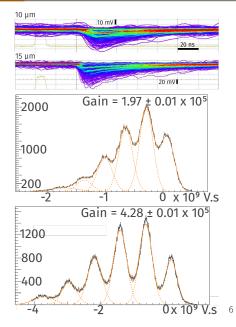
analog detector : all pixels are read in parallel



signal  $\propto$  number of fired pixels  $\propto$  incident number of  $\gamma$ 

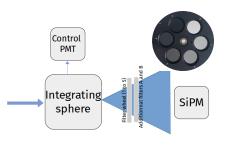
### Meeting the requirements


- SiPMs are insensitive to high magnetic fields
- They are compact
- To collect as much signal as possible, need matrices of SiPMs :
  - The crystal surface is 2  $\times$  2 $cm^2$
  - + Each SiPM is  $3 \times 3mm^2$
- Large dynamic range required → need a high number of pixels
  2 models of Hamamatsu SiPM
  - 15 µm pixels (39984 pixels)
  - 10 µm pixels (89984 pixels)



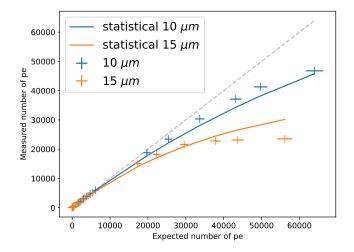

#### Gain measurement, single photo-electron spectrum

Thanks to Vincent Chaumat (IJCLab), a test bench was set up to start characterization of the SiPMs.





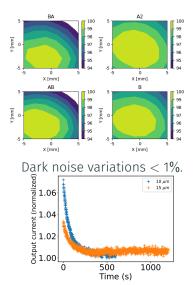




# Linearity measurement

- Dynamic range of the SiPMs is crucial.
- + Low light levels : output signal  $\propto$  incident number of  $\gamma.$
- Higher light input  $\rightarrow$  more probability to have multiple  $\gamma$  hitting the same pixel and initiating correlated avalanches  $\rightarrow$  saturation.
- We can't reach perfect linearity but we need to be able to precisely correct for non-linearity.

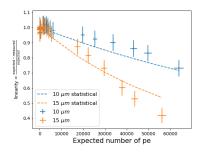


- Calibrated filters (transmittance T).
- Send low number of  $\gamma$  to the SiPM and measure their response
- Use lighter filters, the expected SiPM response is known from the filter calibration.
- Comparing it with the measured response assesses the linearity= <u>expected – measured</u> <u>expected</u>

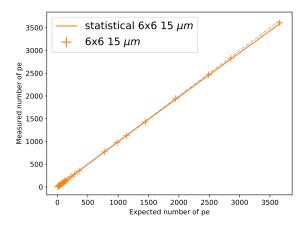

#### Linearity results



Statistical estimate =  $N_{pixel}(1 - exp(-\frac{pe_{linear}}{N_{pixel}}))$ 


#### Sources of systematics

Light deviated adding filters, 2% variations.



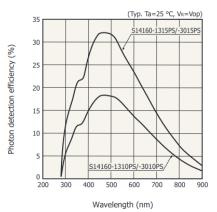

Filter calibration is the main source of systematics.

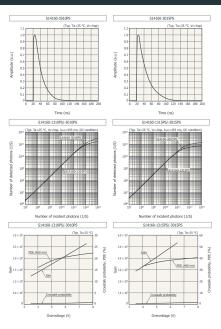
- Frequent handling of filters can get them dirty. For very dense filters this effect becomes very important.
- Use of a photo-diode to calibrate filters, its behaviour at very low current is maybe not entirely linear.
- Repeating low intensity measurements over  $\simeq$  10 points indicate that linearity can be known up to 4% with the current setup.



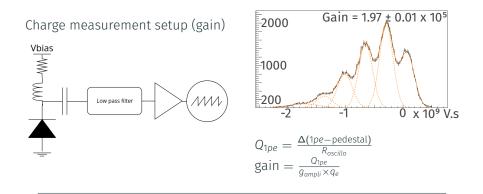
Hamamatsu recently developed larger SiPMs  $\rightarrow$  reduces the number of channels to be read by a factor 4.







- Preliminary characterization of SiPMs for the EEMC have been performed.
- They will guide the requirements for developing readout electronics, discussions on-going between several teams at Paris-Saclay.
- Towards a prototype for the EEMC : matrices of SiPMs on the surface of PWO.

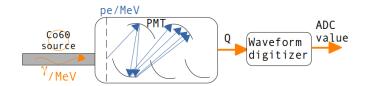
# Backup


#### Hamamatsu S14160-3010/15

Fill factor 31 % / 49 % PDE @460nm 18 % / 32 % DCR 700 kcps (max 2100 kcps)






# Miscellaneous information about the measurements



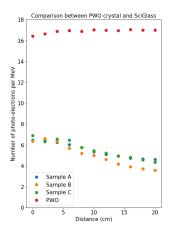
Current measurement setup (linearity) SiPMs powered and read directly with a sourcemeter.

number of pe =  $\frac{1}{\text{LED frequency} \times \text{gain} \times q_e}$ 

### Light Yield measurement



Charge  $O = \overline{\underline{ADC} \text{ value }^* \text{ charge per ADC}}$ 


#### Number of photo-electrons/ MeV

 $\frac{p.e}{MeV} = \frac{Q}{PMT \text{ gain }^* \text{ mean energy of the radiation source}}$ 

PMT gain measured with single p-e spectrum

Number of photons/<br/> $\frac{MeV}{MeV}$  $\frac{\gamma}{MeV}$  $\frac{Q.E*T*fraction of photons getting to the PMT$ 

- OF=0.25
- fraction of reflected and scattered photons = 0.9
- T = measurement at 450nm

