

Low-Energy Experiments for the determination of the Electroweak Mixing Angle

IGU

HIM

PRISMA+

Frank Maas, Institut für Kernphysik and Heimh

GRATA PATRI2023 EIC User Group Early Career Workshop, Faculty of Physics, Warsaw University, W

Search for physics beyond the standard model

Direct: High Energy (LHC)

Indirect: High Intensity

- at low energy
- accurate theory needed

Search for physics beyond the standard model

Direct: High Energy (LHC)

Indirect: High Precision Anom. Mag. Moment $(g-2)_{\mu,e}$, EDM, $sin^2 \theta_W$, ...

Indirect: High Intensity Rare B-decays

• at low energy

• accurate theory needed

Direct observation versus precision measurements: top-quark, Higgs

The last two particles of the standard model have been seen in indirect searches before their direct production

The role of the weak mixing angle

• Key parameter in Electroweak sector of the Standard Model.

$$\begin{pmatrix} \gamma \\ Z^0 \end{pmatrix} = \begin{pmatrix} \cos \theta_{\rm W} & \sin \theta_{\rm W} \\ -\sin \theta_{\rm W} & \cos \theta_{\rm W} \end{pmatrix} \begin{pmatrix} B^0 \\ W^0 \end{pmatrix}$$
$$\sin^2(\theta_W) = (1 - \frac{m_W^2}{m_Z^2}) \qquad m_Z = \frac{m_W}{\cos \theta_W}$$
$$\cos \theta_{\rm W} = \frac{g}{\sqrt{g^2 + g'^2}} \qquad \sin \theta_{\rm W} = \frac{g'}{\sqrt{g^2 + g'^2}}$$
$$e = g \sin \theta_{\rm W} = g' \cos \theta_{\rm W}$$

g'

 θ_{w}

е

 $\sqrt{g^2+g'^2}$

g

 θ_{w}

Access to the weak mixing angle at high energy h_{A} h_{A} h_{B} h_{B}

- e⁺e⁻ collider: final state fermions
- $\bar{p}p$, pp collider: Drell-Yan process, PDFs needed
- EIC: deep inelastic scattering, PDFs needed
- Interference between photon exchange and neutral current process
- Cross section dominated by the Z-resonance
- Parity Violating Observables are large at Z-pole
- Imaginary part is large at the Z-pole, sensitivity to new physics suppressed

Summary: Measurements of sin² θ _{W(effective)}

Jinlong Zhang

NC extractions

- PDF uncertainties are fairly small compared to the statistical precision of the data
- We are working to understand if we can use the proton data to extract the weak mixing angle on top of the deuteron result published by Yuxiang
- This data should allow us to get larger statistical precision and have a larger reach in Q

Access to the weak mixing angle at low energy

JG U Par

Parity Violating in elastic electron proton scattering

The role of the weak mixing angle

The relative strength between the weak and electromagnetic interaction is determined by the weak mixing angle: $sin^2(\theta_w)$

 $sin^2 \theta_W$: a central parameter of the standard model accessible through the weak charge

JGU

Precision measurements and quantum corrections:

running α

running sin² θ_w(μ) (P2)

Universal quantum corrections: can be absorbed into a scale dependent, "running" sin² θ_{eff} or sin² $\theta_{W}(\mu)$

Measurements of the weak mixing angle

Running of the weak mixing angle

Extra Z

Mixing with Dark photon or Dark Z

Contact interaction

New Fermions

JG U Example: Supersymmetric standard model extensions PRiSMA+

Example: supersymmetric Standard Model extensions

Ramsey-Musolf and Su, Phys. Rep. 456 (2008)

Proton: special case

Proton Weak charg	ge:	Q _w (p)	=	1-4	l sin² θ _w	
Error:	∆Q _w (p)			=	4	$\Delta \sin^2 \theta_W$
Rel. error:	∆Q _w (p)/0	Չ _w (p)	=	4/((1/sin ²	θ _w) – 4)	($\Delta \sin^2 \theta_w / \sin^2 \theta_w$)
Rel. error	$\Delta sin^2 \theta_w$	′sin² θ _w	=	((1/sin² θ _ν	w) – 4) /4	$\Delta \mathbf{Q}_{w}(\mathbf{p})/\mathbf{Q}_{w}(\mathbf{p})$
Example:	sin² θ _w (5	0 MeV)	=	0.23	8	
		4/($(1/\sin^2 \theta_W) - 4$)	~	20	
		$\Delta \mathbf{Q}_{W}(p)/\mathbf{Q}_{W}(p)$		=	2% f	rom Experiment
		$\Delta sin^2 \theta_w / sin^2 \theta_w$		=	0.1 %	same precision as LEP, SLAC
Neutron Weak charge:		∆Q _w (p)/Q _w (n)		=	∆sin² θ _w /s	sin² θ _w

JG U Physics sensitivity from contact intera (LEP2 convention, g ² = 4pi)			ntact interaction	PRISMA+	
		precision	$\Delta \sin^2 \overline{\Theta}_{W}(0)$	Λ_{new} (expected)	
	APV Cs	0.58 %	0.0019	32.3 TeV	Effective field theory approach (EFT)
	E158	14 %	0.0013	17.0 TeV	
	Qweak I	19 %	0.0030	17.0 TeV	2
	Qweak final	4.5 %	0.0008	33 TeV	
	PVDIS	4.5 %	0.0050	7.6 TeV	
	SoLID	0.6 %	0.00057	22 TeV	
	MOLLER	2.3 %	0.00026	39 TeV	
	P2	2.0 %	0.00036	49 TeV	
	PVES ¹² C	0.3 %	0.0007	49 TeV	20 Jens Erler

PVeS Experiment Summary

22

JG U Parity Violation experiments need very high luminosity

lepton-proton scattering facilities 10¹⁰ (10,000 h)LTFC [CERN Courier, June 2014] data taking 109 HERA and CERN MESA Jlab 6+12 EIC projects 108 ... fixed target $\int \mathcal{L} dt \simeq 8.6 \text{ ab}^{-1}$ SLAC luminosity (10³⁰ cm⁻² s⁻¹) 10' 10⁶ 105 CEIC2 FCC-ep MEIC2 HL-RHIC LHeC MEIC1 104 eRHIC COMPASS 103 CEIC1 BCDMS **HERA** 10² HERMES NMC 10 10^{3} 10^{-1} 102 10 cms energy (GeV)

P. Newman

P2 parity violation experiment in Mainz: program

Qweak@Jlab	P2@MESA hydrogen	P2@MESA carbon	P2@MESA lead
A _{ep} =-226.5 ppb	A _{ep} =-28 ppb	A _{ep} = 416.3 ppb	Neutron skin measurement
⊿A _{ep} = 9.3 ppb	⊿A _{ep} = 0.5 ppb ppb=1/VN Factor 19 After 11,000 h	ΔA_{ep}^{stat} = 2.7 ppb after 300 h ΔA_{ep}^{stat} = 0.9 ppb after 2500 h	
$\Delta A_{ep}/A_{ep}$ = 4.2 %	$\Delta A_{ep}/A_{ep}$ = 1.8 %	⊿A _{ep} /A _{ep} stat= 0.6 % (0.2 %) Polarimetry!	
$\Delta \sin^2 \theta_{\rm W} / \sin^2 \theta_{\rm W} = 0.46 \%$	$\Delta \sin^2 \theta_{\rm W} / \sin^2 \theta_{\rm W} = 0.15 \%$	$\Delta \sin^2 \theta_{\rm W} / \sin^2 \theta_{\rm W} = 0.6 \%$	
	Aux. measurem. backward angle	Aux. measurem. backward angle	

Improvement by high luminosity, long measurement time, small systematics, lower Q²

Constraints from PVES at MESA

- Quark-vectorelectron-axial vector couplings
- Sensitivity down to masses of 70 MeV and up to masses of 50 TeV

PRISMA+

JGU

Future wEFT constraints from APV and PVES

Adam Falkowski at Mainz MITP workshop: Impact on low energy measurements Current QWEAK, PVDIS, and APV cesium experiments:

$$\begin{pmatrix} \delta g_{AV}^{eu} \\ \delta g_{AV}^{ed} \\ 2\delta g_{VA}^{eu} - \delta g_{VA}^{ed} \end{pmatrix} = \begin{pmatrix} 0.74 \pm 2.2 \\ -2.1 \pm 2.5 \\ -39 \pm 54 \end{pmatrix} \times 10^{-3}$$

Projections from combined P2, SoLID, and APV radium experiments:

$$\begin{pmatrix} \delta g_{AV}^{eu} \\ \delta g_{AV}^{ed} \\ 2\delta g_{VA}^{eu} - \delta g_{VA}^{ed} \end{pmatrix} = \begin{pmatrix} 0 \pm 0.70 \\ 0 \pm 0.97 \\ 0 \pm 7.4 \end{pmatrix} \times 10^{-3}$$

$$\mathcal{L}_{\text{wEFT}} \supset -\frac{1}{2v^2} \sum_{q=u,d} g^{eq}_{AV} (\bar{e}\,\bar{\sigma}_{\rho}e - e^c\sigma_{\rho}\bar{e}^c) (\bar{q}\,\bar{\sigma}^{\rho}q + q^c\sigma^{\rho}\bar{q}^c) -\frac{1}{2v^2} \sum_{q=u,d} g^{eq}_{VA} (\bar{e}\,\bar{\sigma}_{\rho}e + e^c\sigma_{\rho}\bar{e}^c) (\bar{q}\,\bar{\sigma}^{\rho}q - q^c\sigma^{\rho}\bar{q}^c)$$

AA, Grilli Di Cortona, Tabrizi 1802.08296

AA, Gonzalez-Alonso in progress

P2 parity violation experiment in Mainz: forward and backward angle measurements

PRISMA+

Auxiliary measurements at backward angles

Present status (accuracy) of electric and magnetic strangeness form factor and axial form factor

axial form factor from backward angle measurement

28

See talk in session new facilities

Systematic effects: detector related (false) asymmetries:

Extreme good control of beam and target Flip Helicity fast Extra spin flip

PRISMA+

Analogue Technique

Count scattered electrons:

- pile-up (double count losses)
- Background Asymmetry
- Very Fast Counting (MHz)
- Measure TOF or Energy

Measure Flux of Scattered electrons:

- no pile-up (double count losses)
- sensitive to small electr. fields.
- no separation of phys. process

Parity violating electron scattering

 20 years of experience with previous parity violating electron scattering experiment (A4)

RTM2

- 10000 h of beam and detector data
- 36 beam stabilisation systems
- Polarimetry, fast electronics, target

- MAMI accelerator in operation
- Large synergy with MOLLER experiment at JLab
- Prototypes of all components tested in MAMI-beam
- Integrating detectors and PMTs (new concept)
- Electronics and data acquisition (collaboration with Manitoba)
- Luminosity monitors
- Accelerator components, new concept position monitors
- Polarimetry

PRISMA+

Quartz glas detector concept

- Cherenkov detector ring consisting of **72 fused silica bars**
- Covering full azimuth 25° 45° polar angle
- **Integrating detector**

- Extended experimental study
- Quartz glas, PMTs, reflector
- **Radiation hardness**
- 35 500 h with MAMI beam

Test of analogue integrating detector and readout

- Analogue signal from electrons in quartz Cherenkov, 274pA=1.7 GHz electrons on detector
- Electronics from U Manitoba
- Response of detector and width as expected
- System is ready to be used in the experiment

Full GEANT4 simulation

37

P2-Detector response

JGU

PVDIS @ SoLID

JLab 12 GeV: Extraordinary opportunity to do the ultimate PVDIS Measurement

Three PV experiments with three different probes for new physics

- Parity violating electron scattering:
 - "Low energy frontier" comprises a sensitive test of the standard model complementary to LHC with a sensitivity to new physics up to 50 TeV
- Determination of $sin^2(\theta_w)$ with highest precision 0.15% (similar to Z-pole)
- P2-Experiment (proton weak charge) at MESA
- Solenoid delivery in December 2023, all critical components delivered, installation of magnet yoke started, start commissioning 2025
- New MESA energy recovering accelerator at 155 MeV, target precision is 2 % in weak proton charge i.e. 0.15% in $sin^2(\theta_w)$,
- Sensitivity to new physics at a scale from 70 MeV up to 50 TeV
- Strategic series of measurements from large asymmetries to ultimate precision
- Final accuracy corresponds to a factor 4 improvement over Qweak-experiment
- Much more physics from PV electron scattering: Neutron Skin in heavy nuclei, weak charge in light nuclei