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Evolution of Al Techniques for Image Enhancement
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Super-Resolution (SR) PET Imaging
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Super-Resolution (SR) PET Imaging
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Very Deep Super-Resolution (VDSR) PET cumeeucn s

- Patch-level multi-channel inputs: lo-res PET, hi-res MR,
spatial locations

- Anatomical information

- Exploit the similarities between the PET and its hi-res MR
counterpart

- Spatial information
- Radio and axial coordinate patches

- Residual learning:

- Compute the difference between the lo-res PET and the ground-
truth hi-res PET

- Shortens the training time

» Design:
- 20 convolutional layers followed by a RelLU, except for the last layer
- 64 filters in each layer, except for the last layer which only has one
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VDSR PET: Simulation Results (Perfect Ground Truth)

MR Hi-Res JE ST S2 S3 S4
TV V1 V2 V3 V4
V: Very deep, S: Shallow

1: only lo-res input, 2: lo-res + anatomical inputs, 3: lo-res + spatial inputs, 4: lo-res + anatomical +
spatial inputs
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Song etal. I[EEE TCI 2020
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VDSR PET: Simulation Results (HRRT Ground Truth)
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V: Very deep, S: Shallow
1: only lo-res input, 2: lo-res + anatomical inputs, 3: lo-res + spatial inputs, 4: lo-res + anatomical +

spatial inputs
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VDSR PET: Clinical Results (HRRT Ground Truth)

MR Hi-Res JE S1 S2 S3 S4

Lo-Res TV V1 V2 V3 \Z

V: Very deep, S: Shallow
1: only lo-res input, 2: lo-res + anatomical inputs, 3: lo-res + spatial inputs, 4: lo-res + anatomical +

spatial inputs
Song etal. I[EEE TCI 2020
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Self-Supervised Super-Resolution (SSSR) PET
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SSSR PET: Clinical Results
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SSSR PET: Clinical Results
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PET Image Denolsing
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Noise2Noise & Noisier2Noise

University of Massachusetts Amherst

« Noise2Noise:

- A weakly supervised denoising approach that reconstructs a clean image from multiple
independent corrupt observations

- Simple and powerful conclusion: it is possible to learn to restore images by only looking

at corrupted examples, at performance at and sometimes exceeding training using clean
data

« Noisier2Noise:

- A method for training a neural network to perform image denoising without access to
clean training examples or access to paired noisy training examples

- Requires only a single noisy realization of each training example and a statistical model of
the noise distribution, and is applicable to a wide variety of noise models

Noise2Noise: Learning Image Restoration without Clean Data Noisier2Noise: Learning to Denoise from Unpaired Noisy Data

Jaakko Lehtinen!2 Jacob Munkberg! Jon Hasselgren! Samuli Laine' Tero Karras' Miika Aittala® Timo Aila' Nick Moran. Dan Sc dt. Yu Zhong, Patrick Coady
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Noise2Void PET Denoising

- Noise2Void relies on corrupt images alone for model training

- Blind spot: A masked receptive field that excludes the central pixel and can
learn to suppress noise by focusing on the neighboring pixels. Thus, it can
generate a prediction distinct from the input even when the input and target
images are identical and noisv.

Inputs
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Song et al. Phys. Med. Biol. 2021
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Noise2Void PET Denoising: Simulation Results

MR Noise-free PET

PSNR
=5

LK
0 & QQ_ @b‘o él/ e’ﬁ QQ- A'Q R
& AR

J

Noisy Gaussian NLM BM3D N2N N2V N2V-MR N2V-PT N2V-PT-MR

‘3}% f‘%ﬁ“f;

WIR

Song et al. Phys. Med. Biol. 2021



BIDSLab University of Massachusetts Amherst

Noise2Void PET Denoising: Clinical Results
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Song et al. Phys. Med. Biol. 2021
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Neighbor2Neighbor PET Denoising

- Neighbor2Neighbor also relies on corrupt images alone for model training.
- The NB2NB approach is inspired by Noise2Noise (N2N).

- A neighbor sub-sampler G = (g4, g,) is applied to generate a pair of sub-samplec
images (gl(y)' gZ(y)) from the inPUt y'| ut Output

- The denoising network (U- 5‘%%
Net) receives g;(y) as input » 2% -3
and solely the PET image of ; .s
g,(y) as target.

- NB2NB uses a regularizer SNbghn:’pl
that considers the s
fundamental difference in
the ground-truth pixel values

between the subsampled L= Lrec +y-Lreg
noisy image pair = [|fe(9:) - gz(y)ll + v ||[fo(91)) — 9200 — g1 (fo () — gz(fe(}’))”

Noise2Noise training Regularizer

________

- fo (gl(y))

I

: 91(foy) gz(fe(y))
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Neighbor2Neighbor PET Denoising

- Simulation Results

MR Noiseless PET Nois Gaussian N2N N2V N2V-MR NB2NB NB2NB-MR

 Clinical Results

MR Low-Noise PET Noisy PET Gaussian N2N N2V N2V-MR NB2NB NB2NB-MR
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Song et al. SNMMI. 2023 (Submitted)
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Emerging Directions

Blind super-resolution

Noise-aware denoising
New architectures
Non-FDG radiotracers
Cross-cohort validation

- Cross-site harmonization

University of Massachusetts Amherst

Artificial Intelligence-
Based Image Enhancement
in PET Imaging

Noise Reduction and Resolution
Enhancement
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Juan Liu, phD?', Masoud Malekzadeh, ms®!, Niloufar Mirian, Msc,
Tzu-An Song, MsP, Chi Liu, PhD®*, Joyita Dutta, PhDP<*

Liu et al. PET Clinics 2021

- Challenges: Replicability, Reproducibility, Generalizability

THE STATE OF THE ART

THE STATE OF THE ART

Nuclear Medicine and Artificial Intelligence: Best Practices
for Algorithm Development
Tyler J. Bradshaw!, Ronald Boellaard?, Joyita Dutta’, Abhinav K. Jha*, Paul Jacobs’, Quanzheng Li°, Chi Liu’,

Arkadiusz Sitek®, Babak Sabouryg, Peter J.H. Scott'®, Piotr J. Slomka'', John J. Sunderland'?, Richard L. Wahl'3,
Fereshteh Yousefirizi'®, Sven Zuehlsdorff'>, Arman Rahmim'®, and Iréne Buvat'’

Artificial Intelligence in Nuclear Medicine: Opportunities,
Challenges, and Responsibilities Toward a

Trustworthy Ecosystem

Babak Saboury’, Tyler Bradshaw?, Ronald Boellaard®, Iréne Buvat®, Joyita Dutta’, Mathieu Hatt®, Abhinav K. Jha’,

Quanzheng Li®, Chi Liu®, Helena McMeekin'®, Michael A. Morris', Peter J.H. Scott'!, Eliot Siegellz,
John J. Sunderland!®, Neeta Pandit-Taskar'“, Richard L. Wahl'®, Sven Zuehlsdorff'®, and Arman Rahmim”
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