Al for PET Image Enhancement

Joyita Dutta, PhD

Associate Professor Biomedical Imaging and Data Science Lab (BIDSLab) Department of Biomedical Engineering University of Massachusetts Amherst

College of Engineering

Overview

Evolution of AI Techniques for Image Enhancement

Super-Resolution (SR) PET Imaging

Paired Low-Res/High-Res Images for Training

Unpaired Low-Res/High-Res Images for Training LR HR

High

_ow

Super-Resolution (SR) PET Imaging

Siemens HR+ Scanner

Siemens HRT Scanner

Image: Siemens HRT Scanner</td

- Legacy clinical PET system
- Spatial resolution

~7.0 mm

- Dedicated human brain PET scanner
- Spatial resolution ~2.7 mm

BIDSLab

Very Deep Super-Resolution (VDSR) PET

- Patch-level multi-channel inputs: lo-res PET, hi-res MR, spatial locations
- Anatomical information
 - Exploit the similarities between the PET and its hi-res MR counterpart
- Spatial information
 - Radio and axial coordinate patches
- Residual learning:
 - Compute the difference between the lo-res PET and the groundtruth hi-res PET
 - Shortens the training time
- Design:
 - 20 convolutional layers followed by a ReLU, except for the last layer
 - 64 filters in each layer, except for the last layer which only has one

Song et al. IEEE TCI 2020

University of Massachusetts Amherst

VDSR PET: Simulation Results (Perfect Ground Truth)

V: Very deep, S: Shallow
1: only lo-res input, 2: lo-res + anatomical inputs, 3: lo-res + spatial inputs, 4: lo-res + anatomical + spatial inputs

VDSR PET: Simulation Results (HRRT Ground Truth)

V: Very deep, S: Shallow
1: only lo-res input, 2: lo-res + anatomical inputs, 3: lo-res + spatial inputs, 4: lo-res + anatomical + spatial inputs

University of Massachusetts Amherst

VDSR PET: Clinical Results (HRRT Ground Truth)

V: Very deep, S: Shallow
1: only lo-res input, 2: lo-res + anatomical inputs, 3: lo-res + spatial inputs, 4: lo-res + anatomical + spatial inputs

Song et al. IEEE TCI 2020

Self-Supervised Super-Resolution (SSSR) PET

SSSR PET: Clinical Results

BIDSLab

SSSR PET: Clinical Results

BIDSLab

PET Image Denoising

Paired Low-Count/High-Count Images for Training

BIDSLab

Unpaired Low-Count/High-Count Images for Training LC HC

LC

Noise2Noise & Noisier2Noise

• Noise2Noise:

- A weakly supervised denoising approach that reconstructs a clean image from multiple independent corrupt observations
- Simple and powerful conclusion: it is possible to learn to restore images by only looking at corrupted examples, at performance at and sometimes exceeding training using clean data
- Noisier2Noise:
 - A method for training a neural network to perform image denoising without access to clean training examples or access to paired noisy training examples
 - Requires only a single noisy realization of each training example and a statistical model of the noise distribution, and is applicable to a wide variety of noise models

Noise2Noise: Learning Image Restoration without Clean Data

Noisier2Noise: Learning to Denoise from Unpaired Noisy Data

Nick Moran, Dan Schmidt, Yu Zhong, Patrick Coady

Jaakko Lehtinen¹² Jacob Munkberg¹ Jon Hasselgren¹ Samuli Laine¹ Tero Karras¹ Miika Aittala³ Timo Aila¹

Noise2Void PET Denoising

BIDSLab

- Noise2Void relies on corrupt images alone for model training
- Blind spot: A masked receptive field that excludes the central pixel and can learn to suppress noise by focusing on the neighboring pixels. Thus, it can generate a prediction distinct from the input even when the input and target images are identical and noisy.

Song et al. Phys. Med. Biol. 2021

Noise2Void PET Denoising: Simulation Results

Song et al. Phys. Med. Biol. 2021

Noise2Void PET Denoising: Clinical Results

Song et al. Phys. Med. Biol. 2021

Neighbor2Neighbor PET Denoising

- Neighbor2Neighbor also relies on corrupt images alone for model training.
- The NB2NB approach is inspired by Noise2Noise (N2N).

y

- A neighbor sub-sampler $G = (g_1, g_2)$ is applied to generate a pair of sub-sampled images $(g_1(y), g_2(y))$ from the input y.
- The denoising network (U-Net) receives $g_1(y)$ as input and solely the PET image of $g_2(y)$ as target.
- NB2NB uses a regularizer that considers the fundamental difference in the ground-truth pixel values between the subsampled noisy image pair

Neighbor2Neighbor PET Denoising

Simulation Results

Clinical Results

BIDSLab

Emerging Directions

- Blind super-resolution
- Noise-aware denoising
- New architectures
- Non-FDG radiotracers
- Cross-cohort validation
- Cross-site harmonization

Artificial Intelligence-Based Image Enhancement in PET Imaging Noise Reduction and Resolution Enhancement

Juan Liu, PhD^{a,1}, Masoud Malekzadeh, Ms^{b,1}, Niloufar Mirian, Msc^a, Tzu-An Song, Ms^b, Chi Liu, PhD^{a,*}, Joyita Dutta, PhD^{b,c,*}

Liu et al. PET Clinics 2021

Check for updates

Challenges: Replicability, Reproducibility, Generalizability

THE STATE OF THE ART

Nuclear Medicine and Artificial Intelligence: Best Practices for Algorithm Development

Tyler J. Bradshaw¹, Ronald Boellaard², Joyita Dutta³, Abhinav K. Jha⁴, Paul Jacobs⁵, Quanzheng Li⁶, Chi Liu⁷, Arkadiusz Sitek⁸, Babak Saboury⁹, Peter J.H. Scott¹⁰, Piotr J. Slomka¹¹, John J. Sunderland¹², Richard L. Wahl¹³, Fereshteh Yousefirizi¹⁴, Sven Zuehlsdorff¹⁵, Arman Rahmim¹⁶, and Irène Buvat¹⁷

THE STATE OF THE ART

Artificial Intelligence in Nuclear Medicine: Opportunities, Challenges, and Responsibilities Toward a Trustworthy Ecosystem

Babak Saboury¹, Tyler Bradshaw², Ronald Boellaard³, Irène Buvat⁴, Joyita Dutta⁵, Mathieu Hatt⁶, Abhinav K. Jha⁷, Quanzheng Li⁸, Chi Liu⁹, Helena McMeekin¹⁰, Michael A. Morris¹, Peter J.H. Scott¹¹, Eliot Siegel¹², John J. Sunderland¹³, Neeta Pandit-Taskar¹⁴, Richard L. Wahl¹⁵, Sven Zuehlsdorff¹⁶, and Arman Rahmim¹⁷

Acknowledgments

BIDSLab@UMass

R01AG072669 R21AG068890 R03AG070750

Thank You!

