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Overview
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Evolution of AI Techniques for Image Enhancement
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Super-Resolution (SR) PET Imaging
Paired Low-Res/High-Res Images for 
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Unpaired Low-Res/High-Res 
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High

Low

Super-Resolution (SR) PET Imaging

Siemens HR+ Scanner Siemens HRRT Scanner

• Legacy clinical 
PET system

• Spatial resolution 
~7.0 mm

• Dedicated human 
brain PET scanner

• Spatial resolution 
~2.7 mm

Paired Low-Res/High-Res Images for 
Training

Unpaired Low-Res/High-Res 
Images for Training

LR

LR

HR
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Very Deep Super-Resolution (VDSR) PET
• Patch-level multi-channel inputs: lo-res PET, hi-res MR, 

spatial locations
• Anatomical information
• Exploit the similarities between the PET and its hi-res MR 

counterpart
• Spatial information
• Radio and axial coordinate patches

• Residual learning:
• Compute the difference between the lo-res PET and the ground-

truth hi-res PET
• Shortens the training time

• Design:
• 20 convolutional layers followed by a ReLU, except for the last layer
• 64 filters in each layer, except for the last layer which only has one

Song et al. IEEE TCI 2020



BIDSLab

VDSR PET: Simulation Results (Perfect Ground Truth)

Lo-Res                   TV V1 V2 V3 V4

MR                    Hi-Res                   JE                 S1 S2 S3 S4

V: Very deep, S: Shallow
1: only lo-res input, 2: lo-res + anatomical inputs, 3: lo-res + spatial inputs, 4: lo-res + anatomical + 
spatial inputs 

Song et al. IEEE TCI 2020
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VDSR PET: Simulation Results (HRRT Ground Truth)

Lo-Res                TV V1 V2 V3 V4

V: Very deep, S: Shallow
1: only lo-res input, 2: lo-res + anatomical inputs, 3: lo-res + spatial inputs, 4: lo-res + anatomical + 
spatial inputs 

MR                    Hi-Res                   JE                 S1 S2 S3 S4

Song et al. IEEE TCI 2020
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VDSR PET: Clinical Results (HRRT Ground Truth)

Lo-Res                TV V1 V2 V3 V4

MR                   Hi-Res                 JE                     S1 S2 S3 S4

V: Very deep, S: Shallow
1: only lo-res input, 2: lo-res + anatomical inputs, 3: lo-res + spatial inputs, 4: lo-res + anatomical + 
spatial inputs 

Song et al. IEEE TCI 2020
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Self-Supervised Super-Resolution (SSSR) PET
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Song et al. Neural Networks 2020
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SSSR PET: Clinical Results

MR LR HR RBV TV JE

VDSR Lin et al. SSSR-SVPSF SSSR-NoSim SSSR-Sim 1162

0 0

0.000421

Song et al. Neural Networks 2020
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SSSR PET: Clinical Results
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Song et al. Neural Networks 2020
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PET Image Denoising
Paired Low-Count/High-Count 

Images for Training

Unpaired Low-Count/High-Count 
Images for Training
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Noise2Noise & Noisier2Noise
• Noise2Noise: 
• A weakly supervised denoising approach that reconstructs a clean image from multiple

independent corrupt observations 
• Simple and powerful conclusion: it is possible to learn to restore images by only looking 

at corrupted examples, at performance at and sometimes exceeding training using clean 
data

• Noisier2Noise:
• A method for training a neural network to perform image denoising without access to 

clean training examples or access to paired noisy training examples
• Requires only a single noisy realization of each training example and a statistical model of 

the noise distribution, and is applicable to a wide variety of noise models 



BIDSLab

Noise2Void PET Denoising
• Noise2Void relies on corrupt images alone for model training
• Blind spot: A masked receptive field that excludes the central pixel and can 

learn to suppress noise by focusing on the neighboring pixels. Thus, it can 
generate a prediction distinct from the input even when the input and target 
images are identical and noisy.
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Song et al. Phys. Med. Biol. 2021
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Song et al. Phys. Med. Biol. 2021
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Regularizer

Neighbor2Neighbor PET Denoising
• Neighbor2Neighbor also relies on corrupt images alone for model training.
• The NB2NB approach is inspired by Noise2Noise (N2N).
• A neighbor sub-sampler 𝐺 = (𝑔1, 𝑔2) is applied to generate a pair of sub-sampled 

images (𝑔1(𝑦), 𝑔2(𝑦)) from the input 𝑦. 
• The denoising network (U-

Net) receives 𝑔1(𝑦) as input 
and solely the PET image of 
𝑔2(𝑦) as target.
• NB2NB uses a regularizer

that considers the 
fundamental difference in 
the ground-truth pixel values 
between the subsampled 
noisy image pair

Noise2Noise training
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• Simulation Results

• Clinical Results

Neighbor2Neighbor PET Denoising

N2V N2V-MR NB2NB NB2NB-MRGaussian N2NNoisy PET MR Low-Noise PET
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Song et al. SNMMl. 2023 (Submitted)
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Emerging Directions
• Blind super-resolution 
• Noise-aware denoising
• New architectures 
• Non-FDG radiotracers
• Cross-cohort validation
• Cross-site harmonization Liu et al. PET Clinics 2021

• Challenges: Replicability, Reproducibility, Generalizability
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Thank You!

@JoyitaDutta

jdutta@umass.edu

https://www.bidslab.org


