
Strategic and Implementation Plan
of the

NSF AI Institute for
Artificial Intelligence & Fundamental Interactions

IAIFI /aI-faI/ https://iaifi.org

Jesse Thaler, Director Mike Williams, Deputy Director

Version 1.1 (in progress) March 8, 2021

This project is supported by National Science Foundation under Cooperative Agreement PHY-2019786.
Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science Foundation.

Potential Synergies in Physics, AI,  
and Medical Imaging

Mike Williams

March 17, 2023

Department of Physics 
NSF AI Institute for Artificial Intelligence and Fundamental Interactions 

Laboratory for Nuclear Science 
Statistics & Data Science Center 

MIT



Strategic and Implementation Plan
of the

NSF AI Institute for
Artificial Intelligence & Fundamental Interactions

IAIFI /aI-faI/ https://iaifi.org

Jesse Thaler, Director Mike Williams, Deputy Director

Version 1.1 (in progress) March 8, 2021

This project is supported by National Science Foundation under Cooperative Agreement PHY-2019786.
Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science Foundation.

Strategic and Implementation Plan
of the

NSF AI Institute for
Artificial Intelligence & Fundamental Interactions

IAIFI /aI-faI/ https://iaifi.org

Jesse Thaler, Director Mike Williams, Deputy Director

Version 1.1 (in progress) March 8, 2021

This project is supported by National Science Foundation under Cooperative Agreement PHY-2019786.
Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science Foundation.

Institute for Artificial Intelligence and Fundamental 
Interactions (IAIFI /ai fai/ https://iaifi.org)

Enable physics discoveries by developing and deploying the next generation of AI technologies 
Galvanize AI research innovation by incorporating physics intelligence into artificial intelligence

Power of AI/ML to process 
large, rich datasets

First principles and best 
practices from physics

https://iaifi.org


Making Decisions @ 40 MHz  
(and living with the consequences)

5 TB/s post zero 
suppression 

(30 EB / year)

All collisions processed in real time on 
GPUs to infer what particles were 

produced and what their properties 
were. Mixture of traditional and AI 

algorithms used.

Vast majority of data must 
be discarded. AI used to 

make most of these 
decisions.

Data analyzed later by 
physicists. Mixture of AI and 
traditional methods used to 
produce published results.

Algorithms used in the real-time environment must be 
robust and interpretable — they must account for 
detector resolution, instability, known unknowns, and must 
provide formal behavioral/performance guarantees to 
convince us that they are fit for purpose.  

In short, we must be able to trust them to make important 
irreversible decisions. 3



Robust AI

-1

+1

-1

+1

Neural networks can be universal function approximators even in high dimensions, which allows them 
to solve some incredibly hard problems — but in the real world our ideal solution is NOT found in the 
set of all functions, but a restricted set of robust ones. 

Noisy  
example

Deep NN overfits on training noise Robust NN respects resolution scale, etc.

Our solution was to create an architecture that guarantees a bound on the gradient of the learned 
function in each direction in feature space: ∂F

∂xi
≤ λ → |F( ⃗x + ⃗ϵ ) − F( ⃗x ) | ≤ λ∥ ⃗ϵ ∥1Domain expert specifies a pr ior i 

inductive bias on learning scales.

Furthermore, we can also make the learned function monotonic in any feature direction by simply 
adding a linear function in that direction!

Kitouni, Nolte, MW [NeurIPS 2021, 2112.00038]4



Robust AI

5 Kitouni, Nolte, MW [NeurIPS 2021, 2112.00038]

Toy demonstrations that our algorithm works as expected.

2-D subspace of the LHCb trigger selection. Our algorithm adopted for all major selections.

Unconstrained NN Monotonic BDT Robust+Monotonic NN



Robust AI

5 Kitouni, Nolte, MW [NeurIPS 2021, 2112.00038]

Toy demonstrations that our algorithm works as expected.

2-D subspace of the LHCb trigger selection. Our algorithm adopted for all major selections.

Unconstrained NN Monotonic BDT Robust+Monotonic NN



Robust & Monotonic AI Applications
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Kitouni, Nolte, MW [ICLR 2023]

We applied our LHC technology out of the box to various benchmark problems where some features 
are known to be monotonic, and we beat state-of-the-art models everywhere — with tiny networks!

ChestXRay diagnoses diseases visible in a chest x-ray, required to be monotonic in age and number 
of patient follow ups. Heart Disease predictions are monotonic in blood pressure and cholesterol. 



FastML

150 TB/s post zero 
suppression 
(1 ZB / year)

Selected collisions processed in real 
time on (C,G)PUs to infer what 

particles were produced and what 
their properties were. Mixture of 

traditional and AI algorithms used.

Vast majority of data must 
be discarded within a few 

microseconds. AI developed 
to make decisions in under 

100 nanoseconds!

Data analyzed later by 
physicists. Mixture of AI and 
traditional methods used to 
produce published results.

7

For CMS and ATLAS, the data volumes are too large to read 
out at 40MHz. Algorithms must decide which events to 
keep before the data buffers fill up, about 4 microseconds. 

Extremely low-latency inference is essential! Many novel 
tools developed by LHC collaborators (founding member 
Phil Harris is in IAIFI and co-leads A3D3), especially for 
running AI on FPGAs. 

https://fastmachinelearning.org



FastML
Potential FastML applications in medicine include anywhere where super low-latency is required.

Wang + [IEEE 2022]

Example of a reconfigurable FPGA for intelligent real-time image analysis which performs image cell 
detection and classification using AI with the ultra low latency needed to tag the cells. 

8

FastML developed 
for the LHC is 

completely 
generic and could 
be used almost 
anywhere out of 

the box.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9321210&tag=1


A3D3

https://a3d3.ai
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Accelerated AI Algorithms for Data-Driven Discovery funded by the NSF HDR program to expand on 
FastML to apply real-time AI at scale to advance scientific knowledge and accelerate discovery. 

Hardware + Algorithm Codevelopment

Domain scientists, AI, 
and hardware 

experts creating and 
applying algorithms 

that exploit 
structured scientific 
data and hardware-

AI co-design.

High Energy Physics

Multi-Messenger Astronomy Neuroscience

R&D on low-latency 
infrastructures to 

enable the study of 
objects previously 
inaccessible to AI-

based studies.

Working to deploy 
fully functional 

heterogeneous AI 
accelerated High 

Level Trigger systems 
for the LHC 
experiments.

Developing AI 
methods that are 

high-throughput and 
low-latency to enable 
significant advances 
in our understanding 

of brain function.



Earth Mover’s Distance
The Earth Mover’s Distance (Wasserstein metric), a key component of Optimal Transport theory, 
determines a distance between 2 distributions. Recently, it was shown that the EMD (probability 
replaced by energy) is the natural metric for the space of particle-collider events.

10

Sec. Shape Specification Illustration

3.3.1 Ringiness Manifold of Rings

OR Ex0,R0(x) =
1

2⇡R0
for |x� x0| = R0

x0 = Center, R0 = Radius

3.3.2 Diskiness Manifold of Disks

OD Ex0,R0(x) =
1

⇡R2
0
for |x� x0|  R0

x0 = Center, R0 = Radius

3.3.3 Ellipsiness Manifold of Ellipses

OE Ex0,a,b,'(x) =
1

⇡ab for x 2 Ellipsex0,a,b,'

x0 = Center, a, b = Semi-axes, ' = Tilt

3.3.4 (Ellipse Composite Shape

+Point)iness OE � ⌧1

Fixed to same center x0

3.3.5 N-(Ellipse Composite Shape

+Point)iness N ⇥ (OE � ⌧1)� I

+Pileup

Table 3: Custom observables, defined using the Shaper prescription, designed to probe jet

substructure at increasing levels of complexity. For each observable, the manifold parameter-

ization is given, either explicitly, or as a composition of previously defined objects. Here, ⌧1
is the one-pointiness (1-subjettiness), and I is the event isotropy. More details on these types

of observables, plus explicit construction of sampling functions, can be found in Sec. 3.3.

– 15 –

Now it is possible to do regression between point-cloud data and parametrized manifolds using the 
EMD as loss. Could this same idea be applied to medical imaging to not only detect the presence of 
unhealthy tissue but to determine its properties?

See also Kitouni, Nolte, MW [NeurIPS 2022, 2209.15624]

Ba, Dogra, Gambhir, Tassisa, Thaler [NeurIPS 2022, 2302.12266]Komiske, Metodiev, Thaler [PRL, 1902.02346]
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Physics-Inspired Generative Models Machine Learning Uncertainties

Strong Lensing Source Reconstruction Exact Symmetries in Normalizing Flows

Et Cetera
Even just within the IAIFI there are too many interesting and relevant projects to mention in this talk.

Strong Lensing Source Reconstruction Using Continuous Neural Fields

Lensing
simulator

Øx

Ø
y

Ø

∞
(Ø

)

qsource = N (µI ,�
2
I )

qlens = N (µlens,⌃lens)

Sample

Sample

Source-plane
coordinates

Source variational
distribution

Neural field representation Variational inference

Lens variational distribution

Observed lensed
image x

Sampled lensed
µ̂images

Positional
encodings MLP

F⇥

p(
x
|µ̂

)
=

N
� x

|µ̂
,�
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Figure 1. A schematic overview of the method used in this work.

key contribution is to treat the source-light distribution as
a continuous neural field, optimized using gradient-based
variational inference. Together with recovering a posterior
distribution over the lens model parameters, our approach is
able to infer high-resolution images of the source galaxy in
its full complexity. In the context of strong lensing, neural
fields have previously been proposed for modeling the den-
sity profile of the smooth lens galaxy (Biggio et al., 2021).

2. Methodology
Our proposal takes the “analysis by synthesis” approach to
conduct probabilistic inference on both the source image and
the lens configuration using a differentiable lensing model.
We describe the three key components of this generative
pipeline below: (1) the differentiable lensing model used for
rendering and the relevant strong-lensing physics, (2) the
continuous neural representation of the source, and (3) the
variational inference procedure used to simultaneously infer
the lens parameter and source posteriors.

2.1. Strong Lensing and the Synthesis Model

At the heart of our approach is a differentiable renderer
that takes the source and lens configurations, and outputs
modeled lensing observations. The simulator we use is a
modified version of gigalens (Gu et al., 2022), written
in Jax (Bradbury et al., 2018).

The position of the source in the lens plane ✓ can be eval-
uated using the lens equation, � = ✓ � �(✓). Here � is
the position in the source plane and �(✓) is the deflection
vector, given by the gradient of the projected gravitational
potential  G(✓) of the lens, �(✓) = r G(✓). The lens
equation relates the lens-plane coordinates back to those in
the source-plane. Given an extended source light profile
fs and a lensing mass distribution, we can reconstruct the
lens-plane observation f 0

s by evaluating the source light on
the lens plane, f 0

s(✓) = fs(✓��(✓)). We refer to, e.g., Treu
(2010) for additional details of the strong lensing formalism.

The main lens deflector is modeled using the commonly

Table 1. List of parameters used in the lens model and their corre-
sponding assumed prior distributions.

Parameter Symbol Prior

Einstein radius ✓E U(1
00, 200

)

Source-lens offset ✓x,0, ✓y,0 U(�0.500, 0.500
)

Eccentricities ✏1, ✏2 N (0, 0.3)

External shear �1, �2 N (0, 0.05)

employed Singular Isothermal Ellipsoid (SIE) parameteri-
zation (Kormann et al., 1994; Treu, 2010). The deflection
vector field in this case is given in terms of angular coordi-
nates ✓x and ✓y via (see e.g., Keeton 2001)

�lens,x =
✓Eqp
1 � q2

tan
�1

"p
1 � q2✓x
�

#

�lens,y =
✓Eqp
1 � q2

tanh
�1

"p
1 � q2✓y
�+ q2

#
,

(1)

where q is the axis ratio (q = 1 corresponding to a spher-
ical lens), � ⌘

q
✓2xq

2 + ✓2y, and ✓E is the Einstein radius
denoting the characteristic lensing scale.

The lens orientation is specified in terms of eccentrici-
ties (✏1, ✏2) =

1�q
1+q (cos(2 ), sin(2 )), where  is a ro-

tation angle. The large-scale lensing effect of the local
environment is included through an external shear com-
ponent {�1, �2} with deflection vector (�ext,x,�ext,y) =

(�1✓x + �2✓y, �2✓x � �1✓y).

After allowing for an overall offset (✓x,0, ✓y,0) between the
lens and source center lines of sight, our lens mass model
consists of 7 parameters {✓E, ✓x,0, ✓y,0, ✏1, ✏2, �1, �2}. We
include the full list of lens model parameters and their as-
sumed prior distributions in Tab. 1.

2.2. Continuous Neural Representation of the Source

In our framework, the source-light distribution is mod-
eled using a continuous neural field F⇥ : R2 7! R2,

Probability distributions of source images 
obtained non-parametrically. 

Mishra-Sharma, Yang [ICML, 2206.14820]

PFGM++: Unlocking the Potential of Physics-Inspired Generative Models

(a) D=64,↵ = 0 (FID=1.96) (b) D=64,↵ = 0.1 (FID=1.97) (c) D=64,↵ = 0.2 (FID=2.07)

(d) D=128,↵ = 0 (FID=1.92) (e) D=128,↵ = 0.1 (FID=1.95) (f) D=128,↵ = 0.2 (FID=2.19)

(g) D=2048,↵ = 0 (FID=1.92) (h) D=2048,↵ = 0.1 (FID=1.95) (i) D=2048,↵ = 0.2 (FID=2.19)

(j) D ! 1,↵ = 0 (FID=1.98) (k) D ! 1,↵ = 0.1 (FID=9.27) (l) D ! 1,↵ = 0.2 (FID=92.41)

Figure 8. Generated samples on CIFAR-10 with varied hyper-parameter for noise injection (↵). Images from top to bottom rows are
produced by models trained with D = 64/128/2048/1. We use the same random seeds for finite Ds during image generation.

PFGM++ unifies 
diffusion models 

(thermodynamics) 
and Poisson flows 
(electrodynamics).

Xu, Liu, Tian, Tong, 
Te g m a r k , J a a k o l a 
[2302.04265]

SIM event consists of a list of particle flow candidates
(PFCs), which are the reconstructed four-momentum and
particle identification (PID) for each measured particle.
The PFCs are clustered into jets, using the anti-kt jet
algorithm with R ¼ 0.5 [66–68]. For each jet, truth-level
GEN jet information is also provided, as well as the CMS-
prescribed JEC. CMS-prescribed JERs are estimated
using Ref. [53].
We select jets whose GEN transverse momentum is in

the range pT ∈ ½500; 1000# GeV. The lower bound of
500 GeV is to avoid any turn-on effects due to the pT;SIM >
375 GeV cut applied to the dataset as a whole. We require
that the GEN pseudorapidity satisfies jηj < 2.4, and that
jets are at least “medium” jet quality [69]. The latent
variable of interest is Z ¼ pT;GEN, and the measured
quantity X ¼ XSIM depends on the choice of ML archi-
tecture. All momenta are divided by a fixed scale of
1000 GeV, so that the data values are roughly Oð1Þ. In
total, 5 × 106 jets are used for training across the whole
pT ∈ ½500; 1000# GeV range.
We consider four different ML models of increasing

sophistication. (1) Dense neural network (DNN): The input
X consists only of the overall jet kinematic properties, with
X ¼ ðpT; η;ϕÞSIM, which is the same information used in
the CMS calibration procedure in Ref. [53]. Each of the
functions A, B, C, and D are constructed as fully connected
neural networks, with three hidden layers of size 64 and
ReLU activations. (2) Energy flow network (EFN): The
inputX consists of the entire set of PFC three-momenta from
the jet. Each of the functions A, B, C, andD are constructed
as energy EFNs [70]. EFNs are permutation-invariant
functions of point clouds inspired by the deep sets formalism
[71]. They take the form fðfp⃗igÞ ¼ F(

P
i pTiΦðηi;ϕiÞ),

which exhibits manifest infrared and colinear (IRC) safety.
For each EFN, theΦ and F functions consist of three hidden
layers of respective sizes (50,50,64) with ReLU activations.
Since C is a function of both X and Z, the Z is appended as
an input to the F function. (3) Particle flow network (PFN):
The same input features as the EFN but inserted into a PFN
[70,71], which does not impose IRC safety. PFNs take the
form fðfp⃗igÞ ¼ F(

P
iΦðpTi

; ηi;ϕiÞ). (4) PFN PID: The
same as the PFN model, but in addition to the three-
momenta of each PFC, the reconstructed PID is included
as an input feature. We follow the PID labeling scheme of
Ref. [70] for photon, charged hadron, etc. Each of these
models is trained for 200 epochs using the ADAM

optimizer [72], with a learning rate of α ¼ 10−4 and a
batch size of 2048. All model parameters are given an L2

regularization loss with weight λ2 ¼ 10−6. The D network
is given an overall L1 regularization loss of λD ¼ 10−3 to
slowly force it to zero by the end of the training. Every 50
epochs, α is reduced by a factor of 5, and λD is increased
by a factor of 10. To aid the numerical convergence,
each model is pretrained with a mean-squared-error
loss Lpre½B;C#¼EPXZ

½(BðxÞ−z)2þ(Cðx;zÞþcovðX;ZÞ)2#.

In Table I, we show the results of the training in a narrow
bin of pT;GEN ∈ ½695; 705# GeV. If our models yield
unbiased estimators of the GEN pT , then the inferred p̂T
distribution should be centered near 700 GeV, which it is
for all models. Adding more information to the model
should not decrease the mutual information, and if useful,
that information should improve the resolution. We see
indeed that the resolution improves with increasing model
sophistication, as does the mutual information IðX;ZÞ. The
resolution from the DNN, which uses the same information
as the CMS procedure, is marginally better than the
nominal CMS 2011 jet resolution from Ref. [53]. The
PFN PID model exhibits the best resolution, which is
roughly 15% better on average than the CMS baseline.
In Fig. 1, we show the distribution of σ̂pT

in the same
pT;GEN ∈ ½695; 705# GeV bin. As the model sophistication
increases, the resolution increases (i.e., the σ̂pT

shift
downward). The non-Gaussian behavior of the ML models

TABLE I. Gaussian ansatz results for the four ML models
compared to the CMS 2011 baseline [53]. On a test dataset of
GEN jets with pT ∈ ½695; 705# GeV, we show the inferred p̂T , its
resolution σ̂pT

, and the learned mutual information between X ¼
XSIM and Z ¼ pT;GEN. The ' values correspond to the standard
deviation of the p̂T and σ̂pT

distributions across the test set, and
bold face indicates the best resolution and highest mutual
information.

Model Mean p̂T (GeV) Mean σ̂pT
(GeV) IðX;ZÞ

DNN 698' 37.7 35.7' 2.1 1.23
EFN 695' 37.3 32.6' 2.3 1.26
PFN 697' 36.9 32.5' 2.5 1.27
PFN PID 695' 35.1 30.8' 3.6 1.32
CMS 2011 695' 38.4 36.9' 1.7 ( ( (

FIG. 1. Learned JER distribution for the four models compared
to the CMS 2011 baseline. The dataset is the same as in Table I.
On average, the PFN PID exhibits 15% better resolution (i.e.,
smaller values) than the CMS default.

PHYSICAL REVIEW LETTERS 129, 082001 (2022)

082001-4

Gambhir, Nachman, Thaler [PRL, 2205.03413]

Calibration by 
inferring corrections, 

uncertainties, and 
correlations 

simultaneously using 
ML leads to improved 

measurements.

IAIFI, DeepMind, + [2208.03832]

Exact symmetry 
equivariant normalizing 

flows developed for 
advanced QCD 

calculations could easily 
be adapted for other 

applications (e.g. exact 
rotational equivariance).



Deep Learning + Deep Thinking     Deep Understanding

Liu, Kitouni, Nolte, Michaud, Tegmark, MW [Oral Highlight @ NeurIPS 2022, 2205.10343]
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We are starting to explore more directly the connections between a deeper understanding of how AI 
methods really work — and the field of AI Safety. We’re open to collaborations with NIH!

In simple problems, e.g. algorithmic ones, AI may seem to do very strange things, but in some cases 
we have been able to use physical reasoning to not only gain qualitative understanding, but to also 
develop theories that can quantitatively describe the learning dynamics. 



Summary
• Building inductive biases into AI/ML methods not only leads to behavioral guarantees, but 

also typically to improved performance and less data needed in training. 

• LHC running conditions have forced us to develop robust and interpretable AI — along with 
ultra low-latency / high-throughput AI. 

• These technologies are already being applied to other domains, including health and 
neuroscience.  

• Recent advances have made it possible to do parametric regression using the Earth 
Mover’s Distance / Wasserstein metric, which is used in many image-processing tasks (and 
in optimal transport). Could this same idea be used in medical imaging?  

• Many other IAIFI products likely have direct applications in health. (I showed a few.) 

• Another major goal of the IAIFI is to combine deep thinking with deep learning to obtain a 
deeper understanding of how AI works — which we believe will ultimately greatly improve AI 
safety. 
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Please feel free to contact us at iaifi@mit.edu (or me directly at mwill@mit.edu) with any questions 
about our IAIFI research, Fellows program, Summer School, etc. We are also open to hosting a 
dedicated workshop at MIT on the intersections of Physics, AI, medical imaging, and AI Safety. 

mailto:iaifi@mit.edu
mailto:mwill@mit.edu
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Thanks! Questions?
https://iaifi.org



Are there synergies between physics, AI, and medical imaging?



Are there concerns with using AI in medical imaging?


