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Making Decisions @ 40 MHz

(and living with the consequences)

5 TB/s post zero
suppression
(30 EB / year)

\ J

Algorithms used in the real-time environment must be
robust and interpretable — they must account for
detector resolution, instability, known unknowns, and must
provide formal behavioral/performance guarantees to
convince us that they are fit for purpose.

In short, we must be able to trust them to make important

irreversible decisions. 3

All collisions processedin real time on
GPUs to inferwhat particles were
produced and what their properties
were. Mixture of traditional and Al
algorithms used.

-
Vast majority of data must
be discarded. Al used to
make most of these
decisions.
"
4
Data analyzed later by
physicists: Mixture of Al and
traditional methods used to
. produce published results.




Robust Al

Neural networks can be universal function approximators even in high dimensions, which allows them
to solve some incredibly hard problems — but in the real world our ideal solution is NOT found in the
set of all functions, but a restricted set of robust ones.

Deep NN overfits on training noise Robust NN respects resolution scale, etc.
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Our solution was to create an architecture that guarantees a bound on the gradient of the learned
function in each direction in feature space:

Domain expert specifies a priori <iA- |F(7+ ?) - F(7)| < /1”?”1

inductive bias on learning scales.

axi

Furthermore, we can also make the learned function monotonic in any feature direction by simply

adding a linear function in that direction!

4 Kitouni, Nolte, MW [NeurlPS 2021, 2112.00038§]



Robust Al

Toy demonstrations that our algorithm works as expected.
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Robust Al

Toy demonstrations that our algorithm works as expected.
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Robust & Monotonic Al Applications

We applied our LHC technology out of the box to various benchmark problems where some features
are known to be monotonic, and we beat state-of-the-art models everywhere — with tiny networks!

Kitouni, Nolte, MW [ICLR 2023]
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ChestXRay diagnoses diseases visible in a chest x-ray, required to be monotonic in age and number
of patient follow ups. Heart Disease predictions are monotonic in blood pressure and cholesterol.



FastML

4 )
r ~ Vast majority of data must
150 TB/s post zero be discarded within'a few.
suppression —l microseconds. Al developed
(1 2B/ year) to make decisions in under
\. J 100 nanoseconds!
§ _ y

For CMS and ATLAS, the data volumes are too large to read

out at 40MHz. Algorithms must decide which events to f Selected collisions-precessed in real h
keep before the data buffers fill up, about 4 microseconds. time on (C;G)PUs to infer what
particles were produced and what
Extremely low-latency inference is essentiall Many novel their properties were. Mixture of
tools developed by LHC collaborators (founding member traditional and A'_algo”thms used.
Phil Harris is in IAIFI and co-leads A3D3), especially for
running Al on FPGAs.
[ )
Data analyzed later by
physicists: Mixture of Al and
traditional methods used to
produce published results.
\_ Y,

https://fastmachinelearning.org /



FastML

Potential FastML applications in medicine include anywhere where super low-latency is required.

Wang + [I[EEE 2022] FastML developed

decision

for the LHC is

completely
generic and could
be used almost
anywhere out of
the box.

Example of a reconfigurable FPGA for intelligent real-time image analysis which performs image cell
detection and classification using Al with the ultra low latency needed to tag the cells.
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https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9321210&tag=1

A3D3

Accelerated Al Algorithms for Data-Driven Discovery funded by the NSF HDR program to expand on
FastML to apply real-time Al at scale to advance scientific knowledge and accelerate discovery.

https://a3d3.ai
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Hardware + Algorithm Codevelopment

Domain scientists, Al,
and hardware
experts creating and
applying algorithms
that exploit
structured scientific

~\

r

High Energy Physics

Working to deploy
fully functional
heterogeneous Al
accelerated High
Level Trigger systems

for the LHC
data and hardware- experiments.
Al co-design.
_
y 4 |
Multi-Messenger Astronomy Neuroscience
Developing Al

R&D on low-latency
Infrastructures to
enable the study of
objects previously
iInaccessible to Al-
based studies.

methods that are
high-throughput and
low-latency to enable
significant advances
In our understanding

of brain function.




—arth Mover’s Distance

The Earth Mover’s Distance (Wasserstein metric), a key component of Optimal Transport theory,
determines a distance between 2 distributions. Recently, it was shown that the EMD (probability
replaced by energy) is the natural metric for the space of particle-collider events.

Komiske, Metodiev, Thaler [PRL, 1902.023406] Ba, Dogra, Gambhir, Tassisa, Thaler [NeurlPS 2022, 2302.12260]
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Now it is possible to do regression between point-cloud data and parametrized manifolds using the
EMD as loss. Could this same idea be applied to medical imaging to not only detect the presence of
unhealthy tissue but to determine its properties?

10 See also Kitouni, Nolte, MW [NeurlPS 2022, 2209.15624]
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Even just within the |AIFI there are too many interesting and relevant projects to mention in this talk.
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Physics-Inspired Generative Models

PFGM++ unifies Eﬁﬁ?ﬂ!—‘
diffusion models B3 ﬁﬂhpmﬂ&
(thermodynamics) ﬂﬂgw!ﬂm
and Poisson flows E'E:g QEE;
(electrodynamics). E&ﬁ'@‘amx
xu, Liu, Tian, Tong, FEIAG~ S
Tegmark, Jaakola ?Hﬁ.’!“'ﬁ
[2302.04265] !zhﬂ'aﬂj
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Strong Lensing Source Reconstruction

Probability distributions of source images
obtained non-parametrically.

Mishra-Sharma, Yang [ICML, 2206.14820]
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ML leads to improved

4 . . .
Machine Learning Uncertainties
Calibration by e g
inferring corrections, SIS

uncertainties, and 2 == P
correlations 2o
simultaneously using

measurements. O %

Jet Energy Resolution G, [GeV]

Gambhir, Nachman, Thaler [PRL, 2205.03413]
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Exact Symmetries in Normalizing Flows

Exact symmetry .

equivariant normalizing
flows developed for
advanced QCD
calculations could easily
be adapted for other
applications (e.g. exact
rotational equivariance).

IAIFI, DeepMind, + [2208.03832]
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Deep Learning + Deep Thinking—»Deep Understanding

In simple problems, e.g. algorithmic ones, Al may seem to do very strange things, but in some cases
we have been able to use physical reasoning to not only gain qualitative understanding, but to also
develop theories that can quantitatively describe the learning dynamics.

Liu, Kitouni, Nolte, Michaud, Tegmark, MW [Oral Highlight @ NeurlPS 2022, 2205.10343]
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We are starting to explore more directly the connections between a deeper understanding of how Al
methods really work — and the field of Al Safety. We’re open to collaborations with NIH!
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Summary

e Building inductive biases into Al/ML methods not only leads to behavioral guarantees, but
also typically to improved performance and less data needed Iin training.

e | HC running conditions have forced us to develop robust and interpretable Al — along with
ultra low-latency / high-throughput Al.

e These technologies are already being applied to other domains, including health and
neuroscience.

e Recent advances have made it possible to do parametric regression using the Earth
Mover’s Distance / Wasserstein metric, which is used in many image-processing tasks (and
in optimal transport). Could this same idea be used in medical imaging”?

e Many other IAIFI products likely have direct applications in health. (I showed a few.)

e Another major goal of the IAIFI is to combine deep thinking with deep learning to obtain a
deeper understanding of how Al works — which we believe will ultimately greatly improve Al
safety.

Please feel free to contact us at iaifi@mit.edu (or me directly at mwill@mit.edu) with any questions
about our IAIFI research, Fellows program, Summer School, etc. We are also open to hosting a
dedicated workshop at MIT on the intersections of Physics, Al, medical imaging, and Al Safety.

13
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Thanks! Questions?
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Are there synergies between physics, Al, and medical imaging?

@ There are several synergies between the fields of physics and Al, especially in the context @9 &P

of medical imaging. Here are a few examples:

1. Image acquisition and processing: Medical imaging technologies, such as CT, MRI, and

PET, rely on complex physics principles to acquire and process images. Physics

experts can collaborate with Al researchers to develop new imaging techniques and

algorithms that can help improve the quality and resolution of medical images.

2. Algorithm development and optimization: Many Al algorithms used in medical imaging

rely on advanced mathematical concepts and optimization techniques that have their

roots in physics. Physicists can bring their expertise in these areas to help optimize and

improve Al algorithms for medical imaging.

3. Machine learning and deep learning: Machine learning and deep learning, two of the
key technologies underlying Al, rely heavily on statistical modeling and data analysis.

These are areas where physicists also have significant expertise, making them valuable

collaborators for Al researchers.

4. New imaging modalities: Physics researchers are constantly developing new imaging
technologies, such as quantum imaging and terahertz imaging, which have the
potential to revolutionize medical imaging. Al can be used to help analyze and interpret
the large amounts of data generated by these new imaging modalities, enabling better

diagnoses and treatment planning.

Overall, the synergies between physics and Al in the field of medical imaging hold great

promise for advancing our understanding of the human body and improving patient care.




Are there concerns with using Al in medical imaging?

@ Yes, there are several concerns with using Al in medical imaging, including: & GP

1. Data quality and bias: Al algorithms are only as good as the data they are trained on. If
the data is incomplete or biased, the algorithm may make incorrect predictions or
diagnoses. For example, if an Al algorithm is trained on a dataset that only includes
images of white patients, it may not perform as well on images of patients of different
races.

2. Interpretability and transparency: Al algorithms can be difficult to interpret, which can
make it hard for doctors to understand how the algorithm arrived at a diagnosis. Lack

of transparency can also make it difficult for regulators to evaluate the safety and

effectiveness of Al algorithms.

3. Legal and ethical concerns: The use of Al in medical imaging raises legal and ethical
concerns, particularly around data privacy and patient consent. For example, if an Al
algorithm is used to diagnose a patient without their knowledge or consent, it could
violate their privacy rights.

4. Integration with existing healthcare systems: Integrating Al into existing healthcare
systems can be a complex and costly process, particularly if the system was not
designed to support Al. This can lead to compatibility issues and delays in
implementing new Al technologies.

5. Overreliance on Al: There is a risk that doctors may become over-reliant on Al and stop
using their own clinical judgement. This could result in missed diagnoses or incorrect
treatments. Therefore, it is important to ensure that Al is used as a tool to assist

doctors rather than replace them.



