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PET is a unique tool to interrogate the human brain

PET can quantify in vivo specific components of
metabolic and neurochemical processes
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What hinders PET feasibility & translation?
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Toward cost-effective and portable dedicated PET scanners

[ AMPET (West Virginia University) ] [ CerePET (Brain Biosciences)

Kinahan P et al. ] Nucl Med 2015; 56: 1540 Bartlett EA et al. Biol Psychiatry 2022; 91 (9): S220
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[ DP-PET (United Imaging Healthcare) ] [ NeuroPET (Photo Diagnostic Systems) ]

Zeng T et al. EJNMMI physics 2021; 8: 1-16 Grogg KS etal. ] Nucl Med 2016; 57: 646-652

Catana C. Development of Dedicated Brain PET Imaging Devices ] Nucl Med 2019; 60(8), 1044-1052




Portable scanners have the potential to
dramatically expand the applications of PET imaging

Imaging in seated /standing configurations
while subjects are engaged in tasks and interact with
their environment naturalistically

Potential for imaging:
v' proximal to real-world events (sports venues,
intensive care units, war zones)
v' in rural areas
v' at outpatient drug abuse treatment centers
v in underserved populations (homebound patients,
k bedridden subjects, prison inmates) /

Wald LL et al. Low-Cost and Portable MRI ] Magn Reson Imaging 2020; 52: 686-696




Challenges for portable brain PET imaging

Developing hardware and software solutions in order to:

1. REDUCE the required INJECTED DOSE of radiotracer
and the WEIGHT of the scanner Chen KT et al. EfNMMI 2021; 48, 2416-2425

. Obtain REAL-TIME DATA RECON and PROCESSING (for
certain applications) Whiteley W et al. IEEE TREMS 2021; 5(1), 65-77

. ELIMINATE the need for CONCURRENT BLOOD
SAMPLING to simplify the acquisition of brain PET

imaging data while maintaining their full
quantification [

Van der Weijden CW]J et al. EfNMMI 2023;
https://doi.org/10.1007/s00259-022-06057-4




Eliminating the need for concurrent blood sampling
to facilitate quantitative PET imaging
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NIBIB R01EB026481: Noninvasive Quantification of Brain Glucose
Metabolism Using a Portable Positron Emission Tomography Camera

1. DEVELOP a BLOOD-FREE method to quantify the net
influx rate (K;) into the brain tissue of PET irreversible
tracers

. VALIDATE the method in new 8F-FDG data collected in
20 healthy controls using both a current PET scanner
(Siemens Biograph mCT) and the portable CerePET
device

. DISSEMINATE a library of software routines that
implement the validated method




STARE: Source-to-Target Automatic Rotating Estimation
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ARTICLE INFO ABSTRACT

Keywords: Introduction: Full quantification of positron emission tomography (PET) data requires an input function. This
Blood-free PET quantification generally means arterial blood sampling, which is invasive, labor-intensive and burdensome. There is no current,
l"e‘fe““’le radiotracers standardized method to fully quantify PET radiotracers with irreversible kinetics in the absence of blood data.
E:E'gf:(oﬁﬁng Here, we present Source-to-Target Automatic Rotating Estimation (STARE), a novel, data-driven approach to
Source-to-target modeling quantify the net influx rate (K;) of irreversible PET radiotracers, that requires only individual-level PET data and
no blood data. We validate STARE with human [*®F]FDG PET scans and assess its performance using simulations.
Methods: STARE builds upon a source-to-target tissue model, where the tracer time activity curves (TACs) in mul-
tiple “target” regions are expressed at once as a function of a “source” region, based on the two-tissue irreversible
compartment model, and separates target region K; from source K; by fitting the source-to-target model across
all target regions simultaneously. To ensure identifiability, data-driven, subject-specific anchoring is used in the
STARE minimization, which takes ad of the PET signal in a vasculature cluster in the field of view (FOV)
that is automatically extracted and partial volume-corrected. To avoid the need for any a priori determination of
a single source region, each of the considered regions acts in turn as the source, and a final K; is estimated in
each region by averaging the estimates obtained in each source rotation.
Results: In a large dataset of human ['®F]FDG scans (N = 69), STARE K; estimates were correlated with corre-
sponding arterial blood-based K; estimates (r = 0.80), with an overall regression slope of 0.88, and were precisely
estimated, as assessed by comparing STARE K; estimates across several runs of the algorithm (coefficient of vari-
ation across runs=6.74 + 2.48%). In simulations, STARE K; estimates were largely robust to factors that influence

v' Migration of code to Python; Matlab code already available at
https://github.com/elizabeth-bartlett/STARE

v Extension to quantification of images with shorter PET acquisition
time (to facilitate use in clinical settings)




INPUT TO STARE
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STARE vs. arterial blood-based

Comparison of blood-free STARE to Arterial blood-based 2TCirr: STARE on DATA
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Portable vs. stationary PET brain imaging
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Bartlett EA, Lesanpezeshki M, Anishchenko S, Ogden RT, Mann J], Beylin D, Miller JM, Zanderigo F
Comparison of the portable CerePET positron emission tomography (PET) scanner with the Siemens Biograph mCT
Proceedings of BRAIN & BRAIN PET 2022, Glasgow, Scotland, May-June 2022; ] Cereb Blood Flow Metab 42 (1_SUPPL), 26-26




Portable vs. stationary PET brain imaging:
improved scatter correction and cross-calibration

Representative subject (imaged 2 months apart)

Biograph mCT CerePET
(stationary) (portable)
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