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Gated optical imaging at Dartmouth - translating to clinics

Cherenkov imaging visualizes
dosein patients “for free”
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Fast cameras image ultra-high dose rate
beams (FLASH) in vivo

Capture kHz time-resolved dose
dynamics of PBS proton beams
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Fast gated cameras measurei.c. oxygen

in vivo during FLASH RT...
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....and navigate surgeons
(tumorresection, trauma..)

PRESS guidance 1cm

Prompt Fluo. (PF)
Conventional PpIX
fluoresc. guidance

-New method: delayed
fluorescence

DHC Pilot award, Not NIH funded (yet!)









Gated camera to capture weak visible Cherenkov light during radiotherapy

Cherenkov light directly indicates dose depositionin patients treated with external radiotherapy beams
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Imaging Cherenkov light in color
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Cherenkov light: How does it really look like?

A
Color Cherenkovimage Superficial CT# (10 mm) Superficial dose plan (10 mm)
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Successful research & business story: Cherenkov imaging

To prevent mis-treatments and secondary cancer as a result of external beam radiotherapy
Simple, low cost, visual feedback - easy deployment in less advanced RT sites

£

OPTICS

11 2020-10-3017:06:07

ble for the
herenkov
echanism.
retina by

vere closed,
Cam [19080106] ©

L. A. Jarvis, et al. JROBP 1;109(5), 2020, Tendler et al. IJROBP 106 (2), 2020



Same technology helps improving accuracy

and safety of FLASH radiotherapy

Radiotherapy course:
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Dose rate paradigm shift:
Conventional: 0.01 Gy/s
FLASH:>40 Gy/s

e

» |/

FLASH irradiators

Plan approval Radiotherapy Follow-up
and QA delivery care

Proton FLASH DADR map GY/s

Example of new treatment
guantities to validate:

E
o
Dose-averaged doserate >

200
= A 150
100
50
—
0

*Unpublished data



i ; ; SBIR R44CA268466
New mulfu kHz camera/developed for UHDR imaging ObTicS
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Capturing beam trajectory
and true scanning speeds

* Imaged Spots
--—Imaged Path

° Planned Spots
—Planned Path

— .|

M. Clark, P. Bruza et al. Phys Med Biol 68(4), 2023.

LB MEDICINE

Proton International

» Cincinnati

Children’s

changing the outcome together

\ 9

Imaging dose-averaged dose rate maps
(4.5-12kHz, 0.2 mm, ~10 x 20 cm FOV)
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Capturing beam trajectory Imaging dose-averaged dose rate maps
and true scanning speeds (4.5-12kHz,0.2 mm, ~10 x 20 cm FOV)
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* We use intensifers: High-speed imaging needs Alan Bean looking at sun

single- or few photon detection capability with an intensified camera
during Apollo 12 mission
« Intensified cameras are proven but have (1969)

disadvantages (damage threshold, mfg scalability..)

« Semiconductor high-performance sensors (SPADs, QIS) to replace ~century-old intensifier concepts

S unobtainium

gty > 1000 100>qty > 1

P.Hartetal., 2012 I[EEE NSS/MIC, 2012.






« Message #1: Accelerate technology transfer of an 1-ph sensitive, ps-ns gated,
103-° kfps sensor for optical medical imaging...

: _ Tope-tier back-illuminated sensor chip
Heinz Graafsma: “You cannot develop the ultimate detector /

forevery application”
... we’d be fine with a good enough one
that will replace intensifiers

Bottom-tier signal processing chip

4x 100Mb/s Data Pads

. PRy
« 3D stacked optical SPADs/QIS are the future ----> I
H H iNniv? g_ é ? éﬂ Top Tier: 256 x 256 % g % [_] [—] m £
« Similar approach as CERN -> Medipix? S \Y\ g\ a spaDsato B ampieh] | | &
" ; 3| B\ i \3\ =55 Ld Ld 5
- Optical detectors and applications as one - T T T & ruonnge et ot £EE
of the focus areas of the NIH/DOE dialogue <10 DataPcs Journal Of Solid-state

* Flexibility of in-pixel signal processing Circuits 54(11), 2019

* Good competitor to iCMOS in terms of
photon detection efficiency

« ~10-100 kfps readouts

.. for safer radiotherapy, better diagnostics & surgeries.



*Certainly with existing,

 Message #2: Combining cutting edge technology with
] . o . . . . proven technology
immediate clinical translation is a big plus for NIH science backup

« This can incredibly broaden the impact

Commercialization, validating clinical beams validating beams in clinicaltrials
R44 CA268466

Imaging FLASH beams
Scintillation dosimetry R43 CA268466

R43 CA268466 ) ) )
Tumor visualization to

minimize residual tumor
Exploring basic concepts during surgery
Of Cherenkov imaging RO1 submitted

RO1 EB023909

Real-Time Cherenkov camera Dosimetry & Oxygen

R44 CA265654 sensing in pre-clinical _PRESS guidance

studies of FLASH

Lo . U01 CA260446
Commercialization

, clinical studies Electron FLASH clinical trial

RO1 submitted
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Thank you for your attention!




	Fast Time-gated Intensified Camera Electronics �for Proton and FLASH Dosimetry��Petr Bruza
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

