

Electronics and Data Acquisition:

State-of-the-art Challenges and Emerging Technologies

2nd Joint DOE/NIH Workshop, March 16-17, 2024 Chien-Min Kao, PhD, Department of Radiology

Principle of Positron Emission Tomography (PET)

PMT based -> SiPM based

SiPM Readout Electronics for PET

ASICs for SiPM

P.P. Calo et al, NIMA (2019)

chip	Time resolution	Power consumption	Note
SPIROC	1 ns rms	25 μW/ch	voltage mode; 0.35 μ m, 50 Ω input impenedance, inverting voltage amplifier; a CRRC ² shaper with selectable shaping time, x1 or x10;a bipolar fast shaper with shaping time of 15 ns for generating trigger; power pulsing to reduce power consumption
EASIROC	<0.3 ns rms	$4.84~\mu W/ch$	voltage mode, similar to SPIROC
PETIROC	trigger jitter 46 ps, 1x1 mm ² Hamamatsu MPPC, fast laser	3.6 mW/ch	voltage mode; SiGe, high bandwidth f_t >60Ghz; slower shaper for energy and an RF common emitter preamp with 10Ghz gain-bandwidth product and a fast discriminator
PETA3	190 ps FWHM CRT, 3x3x5 LYSO, 3x3 mm ² FBP SiPMs	32 mW/ch	voltage mode; 50Ω ; x20; fully differential voltage amplifier for the fast time channel
NINO	64 ps rms SPTR, Hamamatsu S13360-3050CS biased at 62V	20 mW/ch	current mode; differential front-end, open-loop common gate current follower; 1.5 ns rise time for a single fired microcell, 100 ps rms jitter for a 3x3mm ² Hamamatsu MPPC with 1.5V overvoltage
STIC3	67.1 ps rms SPTR, Hamamatsu S13360-3050CS	25 mW/ch	current mode; differential front-end, open-loop common gate current follower;
TOFPET2	95 ps rms SPTR, Hamamatsu S13361-3050E-04, biased at 7.5V overvoltage	<10 mW/ch	current mode; regulated common gate transimpedance amplifier to save power

Data Acquisition (DAQ) System for PET

PETSYS

TOFPET2

- CMOS, 64 ch
- top-level scheme of one channel

FEM128

- 2 FEB/A_v2: 64ch TOFPET2 ASIC, temperature sensor
- 1 FEB/S: connection adaptor
- 1 FEB/I: communicate with FEB/D

FEB/A_v2

- FEB/D-1024 support up to 8 FEM128
- Up to 32 FEB/D-1024 can be daisy chained to a single DAQ input

- time-over-threshold (tot) or energy integration (qdc) mode
- 5-8.2 mW/ch

Methods to improve timing

Analog high-pass filtering

High-pass filter leads to improved timing: better SNR on fast leading edge

High-pass filter with pole-zero cancellation for baseline correction

Bootstrapping techniques

BASP-10011 Compact general purpose 16 channel DAQ module

Features

- 1 channel HV output (40-70 V, up to 300 mW)
- 1 channel DAC output (0 2.5V, up to 20 mA)
- <u>16 channel ADC</u> with analog gain (12-bit, 80 MSPS)
- <u>16 channel FPGA-based TDC</u> (16 ps LSB)
- 4 channel slow ADC for temperature monitoring
- 5V and 12V power supply output for front-end circuit
- High throughput with LVDS serializer (up to 2.4 Gbps)
- Expandable with Brightonix Signal Multiplexer Board (up to 32 modules)
- USB 3.0 interface (up to 1.6 Gbps)

Large area detector

Courtesy of Guen Bae Ko

Various academic research

DAQ Electronics

Waveform Sampler (Switched Capacitor Array)

- 12 bit, up to 5 GHz
- 8+1 channel, 1024 samples/ch
- digital, nontrivial post pulse processing (e.g. noise filtering, baseline correction, pulse pile-up correction)

CAEN VME 32 ch; NIM 16 ch, desktop 16 ch

DAQ Electronics Waveform Sampler PSEC4

6 ch, 256 samples, 4-15 GS/s

PSEC4a: 6 ch, 1024 samples, 2-11 GS/s

• Hardware + (lots of) firmware required for system integration of ASICs.

http://psec.uchicago.edu

DAQ Electronics Multi-Voltage Threshold (MVT)

Data Acquisition Electronics Multi-Voltage Threshold (MVT)

FPAG based 12 ch board, 8-level

MVT22-8 chip

- 8 ch, 4 level
- time res. ~60 ps between two channel

Courtesy of Prof. Q. Xie (HUST)

Commercial PET systems Siemens Biograph Vision ~214 ps (S

~214 ps (Siemens) ~225 ps (Prenosil et al, JNM (2022))

Siemens UDR:

- 2x2 miniblocks => one elec. channel, 1 TDC, 4 ADCs
- 2 elect. Channel
 - 200 LSOs, 128 SiPMs (1.5625 ratio)

Detector electronics

➤ 3,200 LSOs,

2.048 SiPMs

assembly (DEA):

2x8 UDRs

Biograph Vision 600:

- 19 DEA on 82cm dia. Cylinder
- 26.3 cm length
 - ➢ 60,800 LSOs,

19*2,408=38,912 SiPMs

Biograph Vision Quadra

- 106 cm length
 - > 243,200 LSOs, 155,648
 SiPMs

https://www.siemens-healthineers.com/

Commercial PET Systems

- 4x9 LYSO crystal (3.95x5.3x25 mm³)
- 3x6 Hamamatsu SiPMs, each 2x2 mm²
- Light sharing multiplexing, tapered lightguide (36 LYSOs → 18 SiPMs)
 → 36 LYSO s, 18 SiPMs (2:1 ratio)
- detector module = 4x5 detector blocks for 25 cm length
 - ➤ 720 LSOs, 360 SiPMs

Hsu and Levin (2020) in Advances in PET

- D-MI: 34 detector modules on 74.4 cm dia. Ring
 - 24,480 LYSOs, 12,240
 SiPMs
- Signa (PET/MR): 28 detector modules on a 62.4 cm dia. ring
 - 20,160 LYSOs, 10,080
 SiPMs

Commercial Systems

Ul uExplorer ~412 ps (Spencer et al, JNM (2021))

- Detector block = 7x6 LYSO array of 2.76x2.76x18.1 mm³ → 2x2 SiPMs of 6x6 mm² SensL J-series SiPMs
 → 42 LYSOs, 4 SiPMs (10.5:1 ratio)
- Detector module = 5 (transaxial) x 14(axial) detector blocks
 2,940 LYSOs, 280 SiPMs
- Unit = 24 detector modules, 24.02 cm long, 78.6 cm diameter
 - ➢ 70,560 LSOs, 6,720 SiPMs
- 8 units → axial length 194 cm
 564,480 LYSOs, 53,760 SiPMs

Commercial PET Systems

Multiplexing Readout Charge modulation based

Discretized positioning circuit (DPC)

- Z=A+B+C+D; X=(B+C)/Z; Y=(A+B)/Z
- suitable for compact module
- undesirable RC delay
- Resistors → capacitors: better timing

Park et al, Biomed Eng Lett (2022)

hybrid DPC

- improved timing
- shape uniformity

Park et al, PMB (2017)

Multiplexing Readout Charge modulation based

Park et al, Biomed Eng Lett (2022)

row-column sum

capacitor-based has better timing

cross talks between channels

-≪Y2 HV HV HV - «Y3 HV HV «Y4---Yn X4---Xn X 2 X3

HV

Use diodes to reduce cross talks

•

•

≪Y1

HV

Multiplexing Readout Charge modulation based

Park et al, Biomed Eng Lett (2022)

symmetric charge division (SCD)

Cross-strip capacitive coupling

- row-column sum + 1d resistive chain
- reduce # readout channels

Multiplexing Readout Time modulation based

Park et al, Biomed Eng Lett (2022)

Multiplexing Readout Time modulation based

Park et al, Biomed Eng Lett (2022)

electrical delay line multiplexing

Multiplexing Readout

Park et al, Biomed Eng Lett (2022)

Frequency modulation based

• Single sinusoid source per SiPM \rightarrow scalability?

Polarity modulation based

Multiplexing Readout Digital modulation based

- Early digitization allows better performance
- Digital multiplexing can be based on FPGA

digital pulse sequence generation

Examples Modular PET unit

(a)

. . . .

. . . .

. .

Examples Compact DOI/TOF detector

Examples Detector for hybrid PET/EPRI

heat problem are reduced

1,152 LYSOs \rightarrow 128 SiPMs \rightarrow 6 outputs

HE UNIVERSITY OF | Biological

Sciences

Division

27

Pulsar Board R&D Goals

The Pulsar is a custom ATCA full mesh enabled FPGA-based processor board which has been designed with the goal of creating a scalable architecture abundant in flexible, non-blocking, high bandwidth interconnections. Initially motivated by silicon-based tracking trigger R&D needs for LHC experiments, the Pulsar is uniquely positioned as a flexible general-purpose platform ideally suited to situations where multiple processing engines need to be tightly coupled.

- ATCA platform, full mesh backplane
- Scalable, flexible, interconnected
- High bandwidth interconnects
- FPGA based, general purpose
- Multiple processors, tightly coupled
- Blur the distinction between FPGAs

ATCA Background

- Advanced Telecommunications
 Computing Architecture
 - » High availability
 - » Redundant 48V power
 - » Redundant control
 - » Hot swap everything
- Unique full mesh backplane
 - » 4 lanes between all slots
 - » 10G 40G 100G
- Large 8U x 280mm form factor
- High power 300W+ per slot
- IPMI management of intelligent field replaceable units

Courtesy of Dr. T. Liu (FNAL)

Pulsar2b Results

Pulsar2a/2b Expansion: Mezzanine Cards

- Single and Double wide FMC mezzanine cards
- Test high speed interfaces (LVDS, MGT) to Pulsar boards
- Expand processing power (2 x KU060 FPGAs)
- Standalone test platform for Pattern Recognition Associative Memory Devices
 - » ASIC
 - » FPGA
- Track finder board in the demonstration system

Observation

- time of flight → need high bandwidth-gain product, power consumption
- Insert, OS systems → limited space, heat
- long-bore system → extremely larege number of channels
 - » Multiplexing, helps but TOF? count rate?
- Scalable backend electronics? For digital waveform processing?

DAQ Electronics

LAPPD Design

4x4 array of 3x3x10 mm³ LYSO

DAQ Electronics

