Advancing Medical Care through Discovery in the Physical Sciences Workshop Series: **Radiation Detection**

direct Positron Emission Imaging (dPEI)

Department of Biomedical Engineering University of California, Davis March 16th, 2023

Joint DOE / NIH Workshop

Sun II Kwon

Three-dimensional Medical Imaging

X-ray Computed Tomography (X-ray CT)

Positron Emission Tomography (PET)

Single Photon Emission Computed Tomography (SPECT)

3-D or crosssectional images

Physics in Nuclear Medicine

X-ray CT

PET

Physics in Nuclear Medicine, Flohr, T. CT Systems. Curr Radiol Rep 2013

Positron Emission Tomography (PET)

Positron Emission Tomography (PET)

UCDAVIS

(CTR = ~**30 ps FWHM**) ~4.5 mm FWHM

PET and direct Positron Emission Imaging (dPEI)

Reconstruction-free -1 cm 0 +3 cm B

direct Positron Emission Imaging (dPEI) (CTR = ~**30** ps FWHM) ~4.5 mm FWHM

direct Positron Emission Imaging (dPEI)

0.2

-200

~30 ps Timing Resolution

UCDAVIS

TOF difference (ps)

0

-100

Kwon et al. Nature Photonics 2021

Sun II Kwon (sunkwon@ucdavis.edu)

100

direct Positron Emission Imaging (dPEI)

4-mm step moving

Kwon et al. Nature Photonics 2021

New Opportunities From PET to dPEI

Whole-body

Free of geometric constraints for tomography High solid angle coverage with smaller detector area Unprecedented SNR by ultrafast timing Real-time sub-second dynamic imaging

New Opportunities New Designs for Biomedical Imaging

UCDAVIS

EXPLORER 2-m long PET scanner

New Opportunities New Designs for Biomedical Imaging

UCDAVIS

New Opportunities Clinical Research Applications

Quantitative physiology (¹⁵O!) perfusion blood volume hypoxia

Metabolism oxygen

glucose fatty acid

Immune cell distribution, functional status and trafficking

Theranostics - quantifying tumor cell load, distribution, response to treatment, dosimetry

Single subject research

Challenge/Activation paradigms Physiologic Pharmacologic Immunologic Environmental

Quantifying lifestyle interventions in health and disease Nutrition, diet, exercise, stress reduction etc.

Slide courtesy of Dr. Simon R. Cherry

Toward Clinical dPEI System

Demonstration of reconstruction-free direct Positron Emission Imaging (dPEI)

Clinical dPEI system

Toward Clinical dPEI System

Demonstration of reconstruction-free direct Positron Emission Imaging (dPEI)

UCDAVIS

- 1) Multi-channel dPEI detector modules
- 2) Ultrahigh timing resolution digitizers
- 3) Comprehensive computation algorithms

Developing technological and algorithmic foundations

Clinical dPEI system

NIH NIBIB R01 EB033536

detector modules solution digitizers mputation algorithms

Developing Multi-channel dPEI detector modules Gamma Detection Material

UCDAVIS

	Lead glass (currently in dPEI detectors)	Bismuth germa (BGO)
Density (g/cm³)	3.9	7.1
enuation coefficient for 511 keV (cm ⁻¹)	0.45	0.96
nated Cerenkov photon 1 511 keV gamma ray	~8.7	~15.6
Energy information	poor	enough by scintillation pho

Lead-glass material may <u>not</u> be appropriate for practical dPEI systems.

Developing Multi-channel dPEI detector modules Gamma Detection Material

Developing Multi-channel dPEI detector modules Large-area Multi-channel Modules

Developing Multi-channel dPEI detector modules Large-area Multi-channel Modules

Current single channel dPEI detector (CRI-MCP-PMT)

11 mm diameter Single channel

Large-area multi-channel dPEI detector modules

- Cover more area with less or no detector movement
- Collect more events
- Reduce scan time and/or injected dose
- Scan multi-slices simultaneously
- Will be fundamental components for clinical dPEI scanners

Developing Ultrahigh Timing Resolution Digitizers

Current version

Developing Ultrahigh Timing Resolution Digitizers

FPGA: field-programmable gate array

Toward Clinical dPEI Systems

Demonstration of reconstruction-free direct Positron Emission Imaging (dPEI)

UCDAVIS

<u>S</u>U PHOTON IS OUR BUSINESS

Developing technological and algorithmic foundations

Clinical dPEI systems

National Institutes of Health Turning Discovery Into Health

NIH NIBIB R01 EB033536

1) Multi-channel dPEI detector modules 2) Ultrahigh timing resolution digitizers 3) Comprehensive computation algorithms

Acknowledgements

Simon Cherry Daehee Lee Eric Berg Minjee Seo George Burkett Steven Lucero **PEMI** members

Ryosuke Ota Norihiro Harada

Tomohide Omura

Hiroyuki Ohba

Shingo Nishiyama

Masakatsu Kanazawa

PHOTON IS OUR BUSINESS

ETD members

SSD members

R01 EB033536 R35 CA197608 R03 EB027268

Simulation: dPEI vs. 210 ps TOF-PET

Two-panel dPEI scanner

Crystal size: 4.8×3.2 (trans-axial) x 10 (axial) Pitch: 5.02 mm

TOF-PET (210 ps) clinical scanner

Kwon et al. IEEE NSS/MIC/RTSD 2022

Simulation: dPEI vs. 210 ps TOF-PET

Two-panel dPEI

21k counts

100k counts

Attenuation correction only OSEM reconstruction

9

Full ring TOF-PET (210 ps)

Kwon et al. IEEE NSS/MIC/RTSD 2022

