

Detecting Compton Scatters in Liquid Media for Low-Dose High-Resolution TOF-PET

Allison H. Squires

Neubauer Family Assistant Professor Pritzker School of Molecular Engineering University of Chicago Web: <u>squireslab.uchicago.edu</u>

DOE-NIH Workshop: Advancing Medical Care through Discovery in the Physical Sciences: Radiation Detection March 16th, 2023 · Jefferson National Accel. Facility

ACKNOWLEDGEMENTS: Our cross-disciplinary team @ University of Chicago

Henry Frisch Physics

Patrick La Riviere Radiology

Allison Squires Molecular Engineering Electronics and detectors for high-energy physics

TOF-PET detection

Single-molecule spectroscopy + superres. imaging Computational medical imaging + image reconstruction

João Shida

Eric Spieglan

Cameron Poe

Special thanks: Dr. Bernhard Adams Prof. Juan Collar

Fermilab test beam UChicago Med small animal irradiator

Kepler Maya McDaniel Domurat-Sousa

PROBLEM: What are detector-imposed vs. fundamental limitations of TOF-PET?

		Resolution	
	Sensitivity	(FWHM)	
Commercial	1-2%	4-5mm	
Full-body	10-17%	3-4mm	
Ideal	100%	< 1mm	

Higher sensitivity would...

- Reduce radioactive dose to patient
- Decrease imaging time
- Enhance contrast-to-noise
- Expand geographical access

Better resolution would...

- Reveal smaller lesions
- Improve anatomical registration
- Enable new applications

PROPOSAL: Determine lines-of-response via Compton scattering in low-Z media

Requirements:

- Determine location, energy of recoil e⁻
- Deduce line of response @first scatter

Complications:

- Less energy deposited by e⁻ at track start
- Multiple Compton scatters in a chain
- Electron trails must be erasable

Shida JF, Spieglan E, Adams BW, Angelico E, Domurat-Sousa K, Elagin A, Frisch HJ, La Riviere P, Squires AH. (2021) Nucl. Inst. Meth. Phys. Res. A 4

SIMULATION: Full TOPAS / GEANT4 Monte Carlo simulation of TOF-PET

Simulation:

- GEANT4 + customized TOPAS to generate ground truth
- Apply parameterized uncertainty to ground truth
- Determine LORs via max. likelihood of scatter ordering
- Direct image reconstruction from LORs
- NEMA NU-2 2018 protocols for resolution, sensitivity

Tunable parameters:

- Spatial resolution (1 mm)
- Energy resolution (1 keV/switch)
- Temporal resolution for TOF (500 ps)

Results:

- 1. Validation
- 2. Compare to LYSO state-of-the-art
- 3. Understanding possible pitfalls
- 4. Determine influence of tunable parameters to set minimum specs for experimental implementation

SIMULATION: Validation of simulated data

SIMULATION: Sensitivity and resolution of Compton scattering vs. scintillation

Domurat-Sousa K, Poe C, Shida JF, Spieglan E, McDaniel M, et al. (unpublished)

cm

SIMULATION: Not all misidentified Compton scattering chains degrade resolution

Domurat-Sousa K, Poe C, Shida JF, Spieglan E, McDaniel M, et al. (unpublished)

SIMULATION: How do spatial and energy resolution influence detector performance?

Domurat-Sousa K, Poe C, Shida JF, Spieglan E, McDaniel M, et al. (unpublished)

SIMULATION: XCAT brain phantom with lesion, down to 1/10,000 dose

EXPERIMENT: Energy deposited in solvent leaves a temporary "trail"

Shida JF, Spieglan E, Adams BW, Angelico E, Domurat-Sousa K, Elagin A, Frisch HJ, Squires AH. (2021) Nucl. Inst. Meth. Phys. Res. A1

EXPERIMENT: BTFO is switched "ON" by recoil electrons from ~500 keV irradiation

Time Exposed vs. Switched Concentration of BTFO

(Rough) Efficiency Bounding:

 $\Delta C = +10^{-8} \text{ Mol}_{ar} \text{ per day}$ \rightarrow so ~10¹² or 10¹³ molecules per day in ~1 ml

1 mCi = 3x10¹² gamma photons (total) per day

MCNP Compton estimate: ~23 kHz, or 2x10⁹ per day interact with the sample

- Need: >100 switching events per gamma photon
- Get: 10³-10⁴ switched molecules per Compton scatter (< 1 keV/switch) ✓

Dose estimation: Monte Carlo N-Particle (MCNP) simulation

SUMMARY: Compton scattering in low-Z media shows promise for TOF-PET detection

Conclusions:

- Simulations show high sensitivity (70%) and resolution (2mm) for TOF-PET
- Reasonable baseline specs: 1 keV/switch, 0.5mm resolution
- BTFO (diarylethene) could be used as a reversible fluorescent marker

Next steps and future possibilities:

- Implement experimentally
- Incorporate Compton scattering geometry and timing information in ordering likelihood
- Modify for other applications

The Squires Group at the University of Chicago

Avesha Ejaz

Chemistry

Jiachong Chu

PME

Kavya Vaidya

PME

Dana LinKyle LinMaya McDanielOlivia SchafferTrevor AnderbergPME undergradBiophysics + MD/PhDPME undergradPME undergradPhysics

Postdoc and Ph.D. positions available! E-mail <u>asquires@uchicago.edu</u>

Collaborators

Prof. Henry Frisch (Physics)Prof. Patrick La Riviere (Med)Prof. Juan Collar (Physics)Prof Allan Drummond (BMB)Prof. David Pincus (MCGB)

Dr. Asif Ali (MCGB) Prof. Andy Ferguson (PME) Prof. Aaron Esser-Kahn (PME) Dr. Justin Jureller (MRSEC) Prof. Cheryl Kerfeld (MSU/LBNL)

NEUBAUER FAMILY ASSISTANT PROFESSORS PROGRAM

Physics

THE UNIVERSITY OF Chicago Materials CHICAGO Research Center

ACKNOWLEDGEMENTS: Our cross-disciplinary team @ University of Chicago

Henry Frisch Physics

Patrick La Riviere Radiology

Allison Squires Molecular Engineering Electronics and detectors for high-energy physics

TOF-PET detection

Single-molecule spectroscopy + superres. imaging Computational medical imaging + image reconstruction

João Shida

Eric Spieglan

Cameron Poe

Special thanks: Dr. Bernhard Adams Prof. Juan Collar

Fermilab test beam UChicago Med small animal irradiator

Kepler Maya McDaniel Domurat-Sousa

15

PROBLEM: PET Scan Resolution is Limited by Detector Size and Precision

Moses, WW. (2011) "Fundamental Limits of Spatial Resolution in PET". Nucl. Instrum. Meth. Phys. Res. A

SIMULATION: Expected energy, scattering direction, and spacing of recoil electrons

Shida JF, Spieglan E, Adams BW, Angelico E, Domurat-Sousa K, Elagin A, Frisch HJ, Squires AH. (2021) Nucl. Inst. Meth. Phys. Res. A

SIMULATION: Disambiguate multiple scatters to determine original gamma trajectory

Ordering: ~90% accuracy (brightest 3)

Shida JF, Spieglan E, Adams BW, Angelico E, Domurat-Sousa K, Elagin A, Frisch HJ, Squires AH. (2021) Nucl. Inst. Meth. Phys. Res. A

IMAGE RECONSTRUCTION: Use scattering sites to determine LOR for each gamma pair

Uncertainty along the **axis**: Tens of centimeters (timing)

Uncertainty **transverse** to axis: **Tens of microns** (100x improvement)

Intersections of needles produce high image resolution due to transverse uncertainty improvement

1000x reduced dose simulation

Simulation – ground truth

Back-projection: S/N > 3

EXPERIMENT: Can BTFO be switched by gamma rays ~500 keV (similar to PET)?

2 weeks (2 day time points)

MEASUREMENTS: Post-exposure confocal fluorescence (compared to control)

4

Time (sec)

Exposure does not (measurably) inactivate or damage BTFO

RESULTS: BTFO can also be switched to the fluorescent state by X-rays

NEXT STEPS: Visualizing trails of Compton-scattered electrons

Future application: Improved PET detection by

mapping Compton scatter kinematic chain

Optical recording: Scanned imaging + reset system

Imaging: single BTFO in LAB \rightarrow photoswitched

Visualize any process that deposits energy spatially in the solvent

Y-rays;

Controls

Control A: Stored in foam in the light-proof box with the rest of the samples. Control B: Wrapped in cinefoil in the lightproof box with the rest of the samples. Control C: Wrapped in cinefoil and stored in a dark cabinet, untouched for the duration of the experiment.

	Parameter	Symbol	Value	Comment	
Scintillator Properties					
1	Scintillation Yield	Y_{scint}	$> 2 \times 10^3$	# of scintillation photons per MeV	
2	Scintillation Rise Time	$ au_r$	TBD	1/e rise time of scintillation light	
3	Scintillation Decay Time	$ au_d$	TBD	1/e decay time of scintillation light	
Switchillator Properties					
1	Activation Yield	Y_{act}	$> 5 \times 10^3$	# of ON fluorophores per MeV de-	
				posited	
2	Activation Wavelength	λ_{act}	< 400 nm	Peak inactive to active wavelength	
3	Excitation Wavelength	λ_{ex}	350-650 nm	At max separation	
4	Dye Ratio	Z_{dye}	$< 10^{-12}$	Ratio of rates of background activa-	
		-		tion to fluorescence at λ_{ex}	
5	On-State Lifetime	$ au_{ON}$	$3 \times 10^{-7} - 10^{-1} \text{ s}$	1/e Lifetime of ON fluorophores	
6	Fluorescence brightness	$\varepsilon \cdot \Phi_{fl}$	$> 10^{3}/(M \text{ cm})$	Rate of emission from active dye	
7	Mean Absorption Length	$\chi(\lambda_{ex})$	> 6 m	$1/e$ absorption length at λ_{ex}	
8	Emission Wavelength	λ_{fl}	400-700 nm	Wavelength of fluorescence light	
9	# of photons per acti-	N_{fl}	> 500	Mean $\#$ of fluorescent photons ex-	
	vated fluorophore			tracted per fluorophore before deac-	
				tivation	

27