

Todd E. Peterson, Ph.D.

Professor of Radiology & Radiological Sciences Vanderbilt University Medical Center

HELPFUL RESOURCE:

The role of Semiconductor Detectors in the future of nuclear medicine

IN MEMORY OF...

A. Bertrand (Randy) Brill, M.D. Ph.D. 12/19/1928 – 2/13/2023

Conducted imaging research with Si(Li), Ge(Li), and HPGe detectors beginning in the late 60s

ADVANTAGES OF SEMICONDUCTOR DETECTORS

- Direct conversion avoid scintillator problems (# of steps, photodetector quantum eff., etc.)
- Compact
- Energy resolution (Fano factors ~0.05 0.2)
- Photolithography used to create pattern of electrodes on device

OPTIONS FOR CAMERAS

		Attenuation		Mobility-	lifetime	
	Density	@ 140 keV	Energy per	Electron	Hole	
	(g/cm ³)	(cm ⁻¹)	e-h pair (eV)	(cm ² /V)	(cm²/V)	•1
Si	2.33	0.02	3.61	0.42	0.22	
Ge	5.32	0.72	2.98	0.72	0.84	
CdTe	5.85	3.22	4.43	3×10 ⁻³	5×10-4	
CdZnTe	5.82	3.07	~5	3×10-3	5×10-5	
HgI ₂	6.40	8.03	4.20	<10-2	5×10-5	_

CHALLENGES WITH SEMICONDUCTOR DETECTORS

- Large number of channels
- Interconnects
- Hole trapping (CdTe/CZT)
- Charge sharing (& charge loss)

PIXELS VS STRIPS

Common Cathode

- N² channel count
- Single-sided processing
- Complicated interconnects and signal routing
- Tile to cover larger area

- **Strip Cathode**
- 2N channel count
- Double-sided processing
- Connect near edges
- Transmission configuration

CLINICAL CZT CAMERAS

Direct Anger camera replacement:

Modular scanning columns:

HIGH-PURITY GERMANIUM (HPGe) DETECTORS

- Germanium detectors are long-time gold standard for gamma-ray spectroscopy
- Early attempts at medical imaging in early 70's
- Contacts/segmentation challenging

VANDERBILT

UNIVERSITY

MEDICAL CENTER

• Chief drawback: requires cryogenic temps (LN₂)

McCready et al., 1971 Semiconductor Detectors in the Future of Nuclear Medicine

SELECTIVE RECENT HISTORY OF HPGe

- Luke & Amman LBNL (~2000) amorphous contacts
- Burks, Hull, Mihailescu, Vetter LLNL (~2004) signal interpolation
- Peterson Vanderbilt (2009) DOE grant: "Small-animal SPECT/CT System Based on Position-sensitive Semiconductor Detectors"
- Hull PHDS (2011) NIH SBIR grant: "Germanium Gamma Cameras"

→ HPGe mechanically-cooled double-sided strip detectors

EVOLUTION OF HPGe DSSDS

ENERGY RESOLUTION

vuis

IMAGING THERAPEUTIC RADIONUCLIDES

vuis

CURRENT DEVELOPMENTS & FUTURE CONSIDERATIONS

- Larger detectors
- Higher temperature operation
- Waveform processing
- Optimizing strip (pixel?) pitch

HPGe BRAIN SPECT CONCEPT

ACKNOWLEDGMENTS

- Funding:
 - NIH:
 - R25 CA136440
 - R44 RR031937
 - R01 EB013677
 - R01 EB026991
 - F31 EB022422-02
 - US Department of Energy BER
 - SREB
- Ethan Hull, Matthew Kiser & everyone at

Lindsay Johnson, Oleg Ovchinnikov, Desmond Campbell, Rose Perea, Andrew Gearhart, Sepi Shokouhi

MASTER OF IMAGING SCIENCE

A new, **1-year master's program** in Imaging Science offered by **Vanderbilt University School of Medicine** with faculty from the renowned **Vanderbilt University Institute of Imaging Science**.

Innovative and comprehensive education across the full range of biomedical imaging science: Course work and practical labs Exposure to clinical & preclinical applications

Research project mentored by faculty in VUIIS

Train for a career in biomedical imaging in one of the premier imaging

research institutes in the world, with experts in

Magnetic Resonance Imaging (MRI) Positron Emission Tomography (PET) Single Photon Emission Computed Tomography (SPECT) Image Analysis X-ray and Computed Tomography (CT) Ultrasound Image-guided therapy Machine Learning in Biomedical Imaging

VANDERBILT School of Medicine Learn more and apply: medicine.vanderbilt.edu/mis

