Studies of the Unpolarized SIDIS Cross Section in SoLID with Transversely/Longitudinally Polarized ³He Targets at 11/8.8 GeV Beam Energies

Shuo Jia

and

Medium Energy Physics Group	На
Department of Physics	De
Duke University	

SoLID Collaboration Meeting, Jefferson Lab, Newport News, VA May 8-9, 2023

Vlad Khachatryan

dronic Physics Group epartment of Physics Indiana University

Outline

 \succ SoLID SIDIS setup with transversely and longitudinally polarized ³He targets

- The setup and experimental details
- Unpolarized cross-section framework
 - Cross section without and with azimuthal modulations
 - Three models under considerations
- Unpolarized cross-section SoLID projections
 - Kinematic correlations
 - Cross-section results at 11 GeV and 8.8 GeV electron beam energies
- Estimated systematic uncertainties
- Summary and outlook

Ψ

Duke

SoLID SIDIS - ³ He	Unpolarízed cross-sectíon	Unpolarízed cross-se
setup	framework	SoLID results
Our run group	experiment parasitic to	the SoLID SIDIS e
E12-10-006: Sir	ngle Spin Asymmetries on T	ransversely Polarize
Rating A Sp	okespersons: JP. Chen, H	I. Gao (contact), X. D.
E12-11-007: Sir Rating A Sp	igle and Double Spin Asymologies (Constraints) and Double Spin Asymologies (Constraints) and the symplectic strain	metries on Longitudi ontact), J. Huang, C.

SIDIS: $e + p \rightarrow e' + \pi \pm X$

- > Target:
 - Length: 40 cm
 - Polarization: $\sim 60\%$
 - Spin flip: \leq 20 mins ${ \bullet }$
 - Polarimetry: $\sim 3\%$
- GEM: six tracking chambers \succ
- > EM Calorimeter: Forward and Large angle
- > SPD: Forward and Large angle
- LGC and HGC
- CLEO-II magnet

Ψ

Duke

Shuo Jia and Vlad Khachatryan: SoLID Collaboration Meeting, May 8-9 (2023), JLab

experiments of

- d ³He (neutron): Jiang, J. Peng, X. Qian
- nally Polarized ³He (neutron): Peng, Y. Qiang, W. Yan

SoLID (SIDIS ³He): 11 GeV & 8.8 GeV beam energies

Duke

Unpolarízed cross-section framework

Unpolarízed cross-section SoLID results

Transversely polarized ³He (E12-10-006)

- > Approved number of days:
 - 48 days (11 GeV) & 21 day (8.8 GeV)
- \geq 69 days requested for the beam on target
- \succ 10 days requested for a study of the x-z factorization with Hydrogen and Deuterium gas using a reference target cell
- \geq 3 days requested with a longitudinal target polarization to study the systematics of potential A_{UI} contamination
- \geq 8 days of total overhead time requested:
 - *unpol. target runs (optics and detector check)*
 - target spin flip and polarization measurements

Longitudinally polarized ³He (E12-11-007)

- Approved number of days:
 - 22.5 days (11 GeV) & 9.5 day (8.8 GeV)
- \geq 32 days requested for the beam on target
- \geq 35 days of total beam time requested to match approximately 50% statistics of the experiment E12-10-006
- \succ When combined with E12-10-006:
 - *no beam time required for data calibration*
 - no target runs and detector calibrations required
- \geq 3 days of total overhead time requested:
 - target spin flip and polarization measurements

Major requirements: Radiation hardness, detector resolution, kaon contamination, DAQ

Expected DAQ rates: < 100 kHz

4

Ψ

Duke

- Momentum coverage: 1.0 7.0 GeV/c; Polar angular coverage: 8.0° 14.8° (for hadron & electron ID)
- Momentum coverage: 3.5 6.0 GeV/c; Polar angular coverage: 15.7° 24.0° (for electron ID)
- > Momentum resolution: $\sim 2\%$; Polar angular resolution: 2 mrad
- > Azimuthal angular coverage: 2π ; Azimuthal angular resolution: 6 mrad
- \geq PID (electron): detection efficiency \geq 90%; pion contamination < 1%
- \geq PID (pion): detection efficiency \geq 90%; kaon contamination < 1%
- Total luminosity: 3.74 · 10³⁶ cm⁻² sec⁻¹
- \blacktriangleright Beam polarimetry: < 3%; Beam current: 15 μ A
- > Many other details in SoLID (Solenoidal Large Intensity Device) Updated Preliminary Conceptual Design Report, <u>https://solid.jlab.org/</u>

Unpolarízed cross-section SoLID results

The SIDIS process represented as (four-momenta given in parentheses)

 $l(k_1) + N(P) \rightarrow l'(k_2) + h(P_h) + X(P_X)$

- *l* lepton beam
- N nucleon target
- *h* produced hadron
- X undetected hadror
- q virtual photon momentum

Ū

Duke

Kinematics of the SIDIS process: assume one-photon exchange approximation

Express the process cross section in terms of the following kinematic variables

$$x_{bj} = \frac{Q^2}{2P \cdot q}, \qquad y = \frac{P \cdot q}{P \cdot k_1}, \qquad z_h = \frac{P \cdot P_h}{P \cdot q},$$

with q and Q² defined as $q \equiv l - l'$ and $Q^2 \equiv -q^2$

Summary and outlook

6

Jefferson Lab

Azimuthal angle between hadron production and lepton scattering planes designated as ϕ_h

$$\gamma = \frac{2M_N x_{bj}}{Q}$$

SoLID SIDIS - ³He setup

ψ

Duke

Unpolarízed cross-section SoLID results

Unpolarized SIDIS differential cross section given by

7

Jefferson Lab

Phys. Rev. D 91, no.7, 074019 (2015)

 (b_h)

zed S

SoLID SIDIS - ³ He	Unpolarízed cross-section	Unpolarízed cross-s
setup	framework	SoLID results

- \succ When $P_{hT} \sim k_{\perp} \ll Q$, TMD factorization known to be valid at leading twist
 - k_{\perp} to be quark transverse momentum within the nucleon
- TMD factorization used by most phenomenological analyses
- In this scheme, the unpolarized structure function F_{UU} given by

Duke

$$F_{UU} = \sum_{q} e_q^2 x \int$$

as convolution of unpolarized TMD PDF and TMD FF

Convenient to work with PDFs and FFs in light-cone coordinates

- $x = k^+/P^+$ and $z = P_h^-/\kappa^-$ (κ to be fragmentation quark momentum)
- \succ Up to the order of k_{\perp}/Q , variables x and z identified with x_{bi} and z_h
- Condition of momentum conservation reads as $P_{hT} = z k_{\perp} + p_{\perp}$
 - p_{\perp} to be transverse momentum of fragmentation hadron with respect to the direction of fragmentation quark

 $d^2 \mathbf{k}_{\perp} f_q(x, k_{\perp}) D_q(z, p_{\perp})$

Use the following Gaussian parameterizations for the TMD PDF and TMD FF:

$$f_q(x,k_{\perp}) = f_q^c(x) \, \frac{e^{-k_{\perp}^2/\langle k_{\perp}^2 \rangle}}{\pi \langle k_{\perp}^2 \rangle} \qquad D_q(z,p)$$

where $f_a^c(x)$ is the collinear PDF, and $D_a^c(z)$ is the collinear FF

> Analytical form of F_{UU} given by

$$F_{UU} = \sum_{q} e_q^2 x_{bj} f_q^c(x_{bj}) D_q^c(z_h) \frac{e^{-P_{hT}^2/\langle P_T^2 \rangle}}{\pi \langle P_T^2 \rangle}$$

- Gaussian widths $\langle k_{\perp}^2 \rangle$ and $\langle p_{\perp}^2 \rangle$ may have different forms of kinematical dependence
- Use the set of LHAPDF CJ15Io for the PDF, and the set of DSSFFIo for the FF

Phys. Rev. D 93, no.11, 114017 (2016)

Ψ

Duke

Summary and outlook

where $\langle P_T^2 \rangle = \langle p_\perp^2 \rangle + z_h^2 \langle k_\perp^2 \rangle$

SoLID SIDIS - ³ He	Unpolarízed cross-section	Unpolarízed cross-se
setup	framework	SoLID results

> The second structure function $F_{UU}^{cos(\phi_h)}$, associated to the $cos(\phi_h)$ modulation of the cross section, is a twist-3 quantity of the order of 1/Q

$$F_{UU}^{\cos(\phi_h)} = F_{UU}^{\cos(\phi_h)} \big|_{\text{Cahn}} + I$$

where

Ψ

Duke

$$F_{UU}^{\cos(\phi_h)}|_{\text{Cahn}} = -2\sum_q e_q^2 x \int d^2 \mathbf{k}_\perp \frac{(\mathbf{k}_\perp)^2}{q}$$

as the Cahn convolution of unpolarized TMD PDF and TMD FF

$$egin{aligned} F_{UU}^{\cos(\phi_h)} ig|_{ ext{BM}} &= \sum_q e_q^2 \, x \int d^2 oldsymbol{k}_\perp \, rac{k_\perp}{Q} rac{P_{hT} - z \, (oldsymbol{k}_\perp \cdot oldsymbol{h})}{k_\perp} \, A_\perp \ &- rac{k_\perp}{M_p} \, h_1^\perp(x,k_\perp) \end{aligned}$$

as the Boer-Mulders convolution of Boer-Mulders TMD PDF and Collins TMD FF

Shuo Jia and Vlad Khachatryan: SoLID Collaboration Meeting, May 8-9 (2023), JLab

 $F_{III}^{\cos(\phi_h)}|_{\mathrm{BM}}$

 $\frac{\underline{x}_{\perp} \cdot \boldsymbol{h}}{Q} f_q(x, k_{\perp}) D_q(z, p_{\perp})$

 $\Delta f_{q^{\uparrow}/p}(x,k_{\perp}) \, \Delta D_{h/q^{\uparrow}}(z,p_{\perp})$

$\frac{2p_{\perp}}{zM_h} H_1^{\perp}(z, p_{\perp})$

SoLID SIDIS - ³ He	Unpolarízed cross-section	Unpolarízed cross-s
setup	framework	SoLID results

> The third structure function $F_{III}^{\cos(2\phi_h)}$, associated to the $\cos(2\phi_h)$ modulation of the cross section, consists of a twist-4 Cahn and a twist-2 Boer-Mulders contributions

$$F_{UU}^{\cos(2\phi_h)} \approx F_{UU}^{\cos(2\phi_h)} |_{\text{Cahn}} + F_U^{O}$$

where

$$\begin{split} F_{UU}^{\cos(2\phi_h)} \big|_{\text{Cahn}} &= 2 \sum_q e_q^2 \, x \int d^2 \mathbf{k}_\perp \, \frac{2(\mathbf{k}_\perp \cdot \mathbf{h})^2 - Q^2}{Q^2} \\ F_{UU}^{\cos(2\phi_h)} \big|_{\text{BM}} &= -\sum_q e_q^2 \, x \int d^2 \mathbf{k}_\perp \, \frac{P_{hT}(\mathbf{k}_\perp \cdot \mathbf{k}_\perp)}{\chi \Delta f_{q^{\uparrow}/p}(\mathbf{x}_\perp)} \end{split}$$

Here we have the same

Ψ

Duke

i) unpolarized TMD PDF and TMD FF

ii) Boer-Mulders TMD PDF and Collins TMD FF

 $\left. \frac{\cos(2\phi_h)}{UU} \right|_{\text{BM}}$

 $\frac{-k_{\perp}^2}{-} f_q(x,k_{\perp}) D_q(z,p_{\perp})$

 $rac{\left(m{h} + z \left[k_{\perp}^2 - 2 (m{k}_{\perp} \cdot m{h})^2
ight]
ight)}{2k_{\perp} p_{\perp}} imes 0$

 $(x, k_{\perp}) \Delta D_{h/q^{\uparrow}}(z, p_{\perp})$

11

SoLID SIDIS - ³He setup

ψ

Duke

Analytical forms of the Cahn and Boer-Mulders azimuthal modulation given by

$$F_{UU}^{\cos(\phi_h)}\Big|_{\text{Cahn}} = -2 \frac{P_T}{Q} \sum_q e_q^2 x_{bj} f_q^c(x_{bj}) D_q^c(z_h) \frac{z_h \langle k_\perp^2 \rangle}{\langle P_T^2 \rangle} \frac{e^{-P_{hT}^2}}{\pi \langle P_T^2 \rangle}$$

$$F_{UU}^{\cos(\phi_h)}|_{BM} = 2e \frac{P_T}{Q} \sum_q e_q^2 x_{bj} \frac{\Delta f_{q^{\uparrow}/p}(x_{bj})}{M_{BM}} \frac{\Delta D_{h/q^{\uparrow}}(z_h)}{M_C} \frac{e^{-P_{hT}^2/\langle P_{T}^2 \rangle_{P}^2}}{\pi \langle P_T^2 \rangle_{P}^2} \\ \times \frac{\langle k_{\perp}^2 \rangle_{BM}^2 \langle p_{\perp}^2 \rangle_{C}^2}{\langle k_{\perp}^2 \rangle \langle p_{\perp}^2 \rangle} \left[z_h^2 \langle k_{\perp}^2 \rangle_{BM} \left(P_{hT}^2 - \langle P_T^2 \rangle_{BM} \right) + \langle p_{\perp}^2 \rangle_{P}^2 \right]$$

$$F_{UU}^{\cos(2\phi_h)}\Big|_{\text{Cahn}} = 2 \frac{P_T^2}{Q^2} \sum_q e_q^2 x_{bj} f_q^c(x_{bj}) D_q^c(z_h) \frac{z_h^2 \langle k_\perp^2 \rangle^2}{\langle P_T^2 \rangle^2} \frac{e^{-P_{hT}^2}}{\pi \langle P_T^2 \rangle^2}$$

$$F_{UU}^{\cos(2\phi_h)}\Big|_{BM} = -eP_T^2 \sum_q e_q^2 x_{bj} \frac{\Delta f_{q\uparrow/p}(x_{bj})}{M_{BM}} \frac{\Delta D_{h/q\uparrow}(z_h)}{M_C} \frac{e^{-P_{hT}^2/p_{BM}}}{\pi \langle P_T^2 \rangle_C^2} \times \frac{z_h \langle k_{\perp}^2 \rangle_{BM}^2 \langle p_{\perp}^2 \rangle_C^2}{\langle k_{\perp}^2 \rangle \langle p_{\perp}^2 \rangle},$$

$$\frac{\langle \langle P_T^2 \rangle}{P_T^2 \rangle}, \\ \frac{P_T^2 \rangle_{BM}}{P_T^2 \rangle_{BM}} \times \\ \frac{\langle \langle P_T^2 \rangle}{P_T^2 \rangle_{BM}}, \\ \frac{\langle \langle P_T^2 \rangle}{P_T^2 \rangle_{BM}}, \\ \frac{\langle \langle P_T^2 \rangle_{BM}}{P_T^2 \rangle_{BM}} \times \\ \frac{P_T^2 \rangle_{$$

,

where

$$\langle P_T^2 \rangle_{BM} = \langle p_\perp^2 \rangle_C + z_h^2 \langle k_\perp^2 \rangle_{BM}$$

$$\langle p_\perp^2 \rangle_C = \frac{\langle p_\perp^2 \rangle M_C^2}{\langle p_\perp^2 \rangle + M_C^2}$$

$$\langle k_\perp^2 \rangle_{BM} = \frac{\langle k_\perp^2 \rangle M_{BM}^2}{\langle k_\perp^2 \rangle + M_{BM}^2}$$

$$M_C^2 \text{ and } M_{BM}^2 \text{ and all the other functional forms to be found in }$$

$$JHEP 06, 007 (2019)$$

$$and$$

$$https://github.com/TianboLi$$

$$U/LiuSIDIS$$

Jefferson Lab

12

U

Duke

- In our analysis three models employed
 - **Default model** with Gaussian width parameters: $k_{\perp}^2 = 0.604 \, (\text{GeV/c})^2$, $p_{\perp}^2 = 0.114 \, (\text{GeV/c})^2$ \bullet
 - used in <u>https://github.com/TianboLiu/LiuSIDIS</u> for SoLID SIDIS asymmetry studies
 - see, e.g., preCDR <u>https://solid.jlab.org/</u> and Jeopardy Updates of E12-11-007, E12-10-006, E12-11-108 at JPAC 50, https://indico.jlab.org/event/545/
 - Barone2015 model with $k_{\perp}^2 = 0.037 \,(\text{GeV/c})^2$, $p_{\perp}^2 = 0.126 + 0.506 \, z_h^2 \,(\text{GeV/c})^2$
 - good description of unpolarized cross-section measured by Xuefei Yan, Rev. C 95, no.3, 035209 (2017) good description of HERMES data on multiplicities, Phys. Rev. D 91, no.7, 074019 (2015)
 - Bacchetta2011 model with $k_{\perp}^2 = 0.14 \,(\text{GeV/c})^2$, $p_{\perp}^2 = 0.42 \, z_h^{0.54} \,(1 z_h)^{0.37} \,(\text{GeV/c})^2$
 - also known to give good descriptions of unpolarized SIDIS cross section and HERMES multiplicity data
- **Default model** used to make unpolarized cross-section figures in our proposal
- Three models used in the systematic uncertainty studies

Unpolarízed cross-section framework

- Kinematic coverage examples of produced π^+ particles
 - 11 GeV and 8.8 GeV combined
 - obtained after the SoLID acceptance
 - no z_h cut implemented
- Phase-space correlation between Q^2 and x_{bi} (top-left)
- > Phase-space correlation between x_{bi} and z_h (top-right)
- > Phase-space correlation between Q^2 and f_h (bottom-left)
- > Phase-space correlation between x_{bi} and f_h (bottom-right)

U

Duke

SoLID SIDIS - ³He setup

Ψ

Duke

 \succ Produced π^+ unpolarized cross section at **11 GeV** beam energy

Shuo Jia and Vlad Khachatryan: SoLID Collaboration Meeting, May 8-9 (2023), JLab

Systematic uncertaíntíes Summary and outlook

First x_{bi} and first P_{hT} bin ranges

Blue pseudo-data points: cross section without azimuthal modulations

Red pseudo-data points: cross section including azimuthal modulations

> Vertical error bars: SoLID statistical uncertainties

Bottom band in each plot: SoLID total systematic uncertainties

Ψ

Duke

Shuo Jia and Vlad Khachatryan: SoLID Collaboration Meeting, May 8-9 (2023), JLab

First x_{bi} and second P_{hT} bin ranges

Summary and

outlook

Blue pseudo-data points: cross section without azimuthal modulations

Red pseudo-data points: cross section including azimuthal modulations

> Vertical error bars: SoLID statistical uncertainties

Bottom band in each plot: SoLID total systematic uncertainties

Jefferson Lab

16

Duke

Shuo Jia and Vlad Khachatryan: SoLID Collaboration Meeting, May 8-9 (2023), JLab

17

Duke

Shuo Jia and Vlad Khachatryan: SoLID Collaboration Meeting, May 8-9 (2023), JLab

18

Duke

Duke

Duke

21

SoLID SIDIS - ³He

Ψ

Duke

Shuo Jia and Vlad Khachatryan: SoLID Collaboration Meeting, May 8-9 (2023), JLab

22

Duke

- > Systematic uncertainties of the $\mathcal{F}_{UU,A}$ cross section estimated from
 - SIDIS model dependence: using the models discussed on slide 13th
 - Pion and electron identification:
 - using the SoLID pion detection efficiency and kaon rejection factor
 - using the CLAS12 inclusive electron cross-section data and similarity of the SoLD and CLASS12 electron detection numbers
 - Radiative corrections: using the recently developed MC event generator from Phys. Commun. 287, 108702 (2023), [arXiv:2210.03785 [hep-ph]]
 - Acceptance correction: using variations among the statistical uncertainties from the models discussed on slide 13th (obtained before and after SoLID acceptance)
 - Luminosity determination: using the beam current, target size and density
 - Other sources: using the lowest polar angle value (for acceptance) as well as W and W' cut variations

Without the azimuthal

modulations included

in the cross section

Systematic uncertainty budget for the unpolarized cross section

SIDIS mo

Pion and ele

Radiativ

Accepta

Luminosit

Othe

Total systematic uncertainty: $0 < x_{bj} < 0.25$ and $0 < P_{hT} < 0.2 \text{ GeV/c:}$ ~ 9 - 13% $0 < x_{bj} < 0.25$ and $0.2 < P_{hT} < 0.4 \text{ GeV/c:}$ ~ 8 - 12% $0.25 < x_{bj} < 0.5$ and $0 < P_{hT} < 0.2 \text{ GeV/c:}$ ~ 9 - 13% $0.25 < x_{bj} < 0.5$ and $0.2 < P_{hT} < 0.4 \text{ GeV/c:}$ ~ 8 - 12%

odel dependence
lectron identification
ve corrections
nce correction
ty determination
er sources
nty:
: ~9-13%
c: ~8 - 12%
c: ~9-13%

Ψ

Duke

- > In our run group proposal, we show unpolarized SoLID SIDIS cross-section results
 - for π^+ particles at 11/8.8 GeV as well as π^- particles at 11 GeV beam energies
 - based on transversely/longitudinally polarized SoLID ³He targets
- Cross-section pseudo-data obtained in 5-dimensional binning of $(x_{bi}, z_h, Q^2, P_{hT}, \phi_h)$
- Cross-section pseudo-data include
 - central points from theory calculations, plus SoLID statistical and systematic uncertainties
- \succ Systematic uncertainties estimated for π^+ particles
 - applied to both π^+/π^- cross sections
- Cross-section without azimuthal modulations include stat. and syst. uncertainties
- Cross-section with azimuthal modulations include only stat. uncertainties
 - more studies needed here for estimating syst. uncertainties
 - perhaps additional asymmetry studies needed to see if $cos(\phi_h)$ and $cos(2\phi_h)$ terms are separable \bullet within all experimental uncertainties

Thank You !

Acknowledgements: Haiyan Gao, Zhiwen Zhao, Jian-Ping Chen, Tianbo Liu, and the entire SoLID collaboration

Shuo Jia and Vlad Khachatryan: SoLID Collaboration Meeting, May 8-9 (2023), JLab

SoLID SIDIS - ³He setup

Ψ

Duke

 \succ Produced π - unpolarized cross section at **11 GeV** beam energy

Shuo Jia and Vlad Khachatryan: SoLID Collaboration Meeting, May 8-9 (2023), JLab

Systematic uncertaíntíes Summary and outlook

First x_{bi} and first P_{hT} bin ranges

Blue pseudo-data points: cross section without azimuthal modulations

Red pseudo-data points: cross section including azimuthal modulations

> Vertical error bars: SoLID statistical uncertainties

Bottom band in each plot: SoLID total systematic uncertainties

Jefferson Lab

27

Ψ

Duke

Shuo Jia and Vlad Khachatryan: SoLID Collaboration Meeting, May 8-9 (2023), JLab

First x_{bi} and second P_{hT} bin ranges

Summary and

outlook

Blue pseudo-data points: cross section without azimuthal modulations

Red pseudo-data points: cross section including azimuthal modulations

> Vertical error bars: SoLID statistical uncertainties

Bottom band in each plot: SoLID total systematic uncertainties

Jefferson Lab

28

SoLID SIDIS - 3He

Ш

Duke

29

SoLID SIDIS - ³He

Ψ

Duke

Shuo Jia and Vlad Khachatryan: SoLID Collaboration Meeting, May 8-9 (2023), JLab

SoLID SIDIS - ³He setup

Ū

Duke

 \succ Produced π^+ unpolarized cross section at **11 GeV** beam energy

 \succ Produced π - unpolarized cross section at **11 GeV** beam energy

Shuo Jia and Vlad Khachatryan: SoLID Collaboration Meeting, May 8-9 (2023), JLab

Systematic uncertaíntíes Summary and outlook

Third x_{bi} , first P_{hT} and higher Q^2 bin ranges

Blue pseudo-data points: cross section without azimuthal modulations

Red pseudo-data points: cross section including azimuthal modulations

> Vertical error bars: SoLID statistical uncertainties

Bottom band in each plot: SoLID total systematic uncertainties

Jefferson Lab

31

SoLID SIDIS - 3He setup

Ū

Duke

 \succ Produced π^+ unpolarized cross section at **11 GeV** beam energy

 \succ Produced π - unpolarized cross section at **11 GeV** beam energy

Shuo Jia and Vlad Khachatryan: SoLID Collaboration Meeting, May 8-9 (2023), JLab

Systematic uncertaíntíes Summary and outlook

Third x_{bi} , second P_{hT} and higher Q^2 bin ranges

Blue pseudo-data points: cross section without azimuthal modulations

Red pseudo-data points: cross section including azimuthal modulations

> Vertical error bars: SoLID statistical uncertainties

Bottom band in each plot: SoLID total systematic uncertainties

Jefferson Lab

32

