

CEBAF SRF/RF/Cryo Workshop

Arne Freyberger

Operations Dept Accelerator Division

JLAB

2014-04-03

Accelerator Operations Department

Outline

1) Introduction

- Workshop Goal
- 2 Accomplishments to date!
- 3 Energy Reach and other predictions
- Operations

Within the last year cavity performance data has been collected on every cavity in CEBAF. This includes 242 original C25 cavities, 88 refurbished C50 cavities and 88 C100 cavities. In addition data exists on the initial performance with beam of the accelerating system. The goal of this work shop is to present the data that has been collected, develop working groups, if needed, to fully analyze the data and develop a plan for maintenance and improvement of CEBAF SRF systems and cavity performance.

February 5 2014: 2.214GeV beam availability

RF gradients Feb. 5 2.2GeV/pass

RF and ARC1:p/ARC2:p status at: 2014-02-05 09:05

Linac	Туре	Ncav	<gmes></gmes>	GMES _{RMS}	Min	-Max	Egai	in
			(MV)	(MV)	(1	MV)	(MeV	V)
Inj	C25	10	6.72	0.81	5.86	-8.63	33	.6
NL	C25	119	7.19	1.64	2.97	-11.71	427	.6
NL	C50	40	11.03	1.49	6.34	-13.45	220	.7
NL	C100	38	17.59	2.40	9.80	-20.77	467	.9
SL	C25	108	7.05	1.40	4.78	-10.56	380	.7
SL	C50	47	10.06	1.90	6.41	-12.36	236	.4
SL	C100	40	16.66	2.75	9.70	-20.00	466	.4
Linac		Egain (MeV)	Σ_E (MeV)	Spectrometer Momer (MeV		Moment (MeV/	um (c)	
Inject	or	33.58	33.58	INJ:p 33.		41		
Nor	th 1	116.15	1149.73	Ar	c1:p	1124.	03	
Sou	th 10	083.44	2233.17	Ar	c2:p	2214.	51	

Injector Beam Current(IBCOR08): 8.88

CEBAF SRF/RF/Cryo Workshop

2014-04-03 5/13

Beam-Target Interactions with $E_{beam} > 6$ GeV

FSD for 2000MeV/pass

RF and arc1/arc2 status at: 2014-04-01 19:22:10

Туре	Ncav	AVG-GMES	STD-GMES	Min-Max	Egain	
		(MV)	(MV)	(MV)	(MeV)	
C25	10	6.54	0.75	4.76- 7.39	32.7	
C100	8	14.69	0.53	14.09-15.90	82.3	
C25	116	5.26	1.53	2.94- 9.31	305.1	
C50	39	10.11	1.70	6.16-13.03	197.1	
C100	40	17.78	1.71	13.06-21.57	497.9	
C25	111	6.85	1.41	4.62-12.26	380.4	
C50	40	9.18	2.45	5.47-12.32	183.5	
C100	39	15.90	2.55	8.99-19.84	434.0	
ector	Energy	: 114.93	Cumulati	/e E: 114.93	3 INJ:p =	112.37
Linac	Energy	999.99	Cumulati	/e E: 1114.93	B ARC1:p =	1112.81
	Type C25 C100 C25 C50 C100 C25 C50 C100 ector Linac	Type Ncav C25 10 C100 8 C25 116 C50 39 C100 40 C100 39 ector Energy Linac Energy	Type Ncav AVG-GMES (MV) C25 10 6.54 C100 8 14.69 C25 116 5.26 C50 39 10.11 C100 40 17.78 C25 111 6.85 C50 40 9.18 C100 39 15.90 ector Energy: 114.93 Linac Energy: 999.99	Type Ncav AVG-GMES STD-GMES (MV) (MV) (MV) C25 10 6.54 0.75 C100 8 14.69 0.53 C25 116 5.26 1.53 C50 39 10.11 1.70 C100 40 17.78 1.71 C25 111 6.85 1.41 C50 40 9.18 2.45 C100 39 15.90 2.55 ector Energy: 114.93 Cumulative Linac Energy: 999.99 Cumulative	Type Ncav AVG-GMES STD-GMES Min-Max (MV) (MV) (MV) (MV) C25 10 6.54 0.75 4.76-7.39 C100 8 14.69 0.53 14.09-15.90 C25 116 5.26 1.53 2.94-9.31 C50 39 10.11 1.70 6.16-13.03 C100 40 17.78 1.71 13.06-21.57 C25 111 6.85 1.41 4.62-12.26 C50 40 9.18 2.45 5.47-12.32 C100 39 15.90 2.55 8.99-19.84 ector Energy: 114.93 Cumulative E: 114.93 Linac Energy: 999.99 Cumulative E: 1114.93	Type Ncav AVG-GMES STD-GMES Min-Max Egain (MV) (MV) (MV) (MV) (MV) (MV) C25 10 6.54 0.75 4.76-7.39 32.7 C100 8 14.69 0.53 14.09-15.90 82.3 C25 116 5.26 1.53 2.94-9.31 305.1 C50 39 10.11 1.70 6.16-13.03 197.1 C100 40 17.78 1.71 13.06-21.57 497.9 C25 111 6.85 1.41 4.62-12.26 380.4 C50 40 9.18 2.45 5.47-12.32 183.5 C100 39 15.90 2.55 8.99-19.84 434.0 ector Energy: 114.93 Cumulative E: 114.93 INJ:p Linac Energy: 999.99 Cumulative E: 114.93 ARC1:p

South Linac Energy: 997.91 Cumulative E: 2112.83 ARC2:p = 2112.80

CEBAF SRF/RF/Cryo Workshop

Towards CEBAF support of a 11/12GeV Physics

Update of Figure 5 from JLAB-TN-12-049, including data (points) from Feb. 2014 operations.

Arne Freyberger Ops. Dept.

CEBAF SRF/RF/Cryo Workshop

2014-04-03 9/13

Director's Cryogenic Capacity Review Committee DRCC 2010

Accelerator Loads Time Period 3								
					12 GeV Operati	ons Era		
					(Oct 2015 and beyo			
	Unit Loads		North Linac			South Linac		
	2 K	35K	#	2К	35K	#	2К	35K
Static								
Transfer Lines	530	7000	0.57	302.1	3990	0.43	227.9	3010
Original CM's	16	110	22.25	356.0	2447.5	20	320	2200
12GeV CM's	50	250	5	250.0	1250	5	250	1250
TL Bayonets				75.0			75	i
FEL	370	1310				1	370	1310
Dynamic								
Original CM's	72	0	22.25	1602.0	0	20	1440	0
12GeV CM's	250	50	5	1250.0	250	5	1250	250
FEL	295	375				1	295	375
Totals (W)			27.25	3835.1	7937.5	26	4227.9	8395
						FEL 2K heat	load acceptab	le
						JLamp 2K he	eat load too lar	ge
			CHL #1	4400	12000	CHL #2	4400	12000
				0.87	0.66	% Full Load	0.96	0.70

- What is the capacity now that the CHLs are operational?
- What are the loads?
- What is the margin? headroom?

CEBAF SRF/RF/Cryo Workshop

2014-04-03

10/13

Jefferson Lab

Gradient Maintenance Path

Based off of DRCC, South Linac/CHL-2 at 96% capacity prediction. JLAB-TN-13-001,

CEBAF SRF/RF/Cryo Workshop

2014-04-03

11/ 13

Jefferson Lab

- Maximize availability across all systems.
- Optimize for beam operations/conditions.

Physics users will tolerate no more than 15trips/h. Of those 15trips/h, 10trips/h is the nominal goal for the cavity trip rate. The other 5trips/h are allotted to other MPS events.

Operations matters!!! Operators turn down cavities for a reason: *the cavity is problematic and interfering with the goal of delivering beam*. Time to debug nuisance cavities in real-time is a luxury operations does not have. Understanding why Ops turns down/by-passes cavities often has be performed post-mortem, do we have the right tools?

```
trips/h < 10
CEBAF Total availability > 90%
```


- What is a reasonable trip rate goal for the C100 or C50 modules? Why isn't it 0trips/h?
- What is the best distribution of gradients across cavity type (C25, C50, C100)? Do we have minimize downtime? or heatload?
- Do we have all the tools required to optimize the system? If not what do we need?
- Minimize *mean time to repair* or maximize *mean time between failure*? Can we afford to **not** work on both?
- What are the gradient maintenance options? Cost/benefit.

Within the last year cavity performance data has been collected on every cavity in CEBAF. This includes 242 original C25 cavities, 88 refurbished C50 cavities and 88 C100 cavities. In addition data exists on the initial performance with beam of the accelerating system. The goal of this work shop is to present the data that has been collected, develop working groups, if needed, to fully analyze the data and develop a plan for maintenance and improvement of CEBAF SRF systems and cavity performance.

