
Hpernuclear DAQ

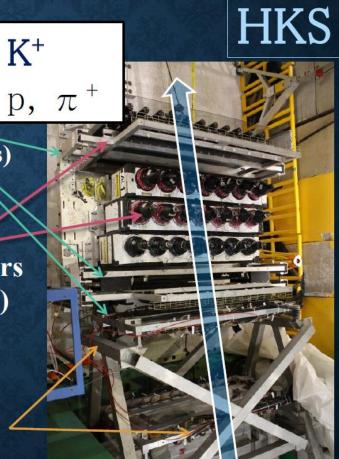
Alexandre Camsonne March 3rd 2023

Outline

- Experiment overview
- Channel count
- Overview pipelined electronics
- Trigger overview
- To do
- Conclusion

Experimental setup for E05-115 (2009) at JLab Hall C

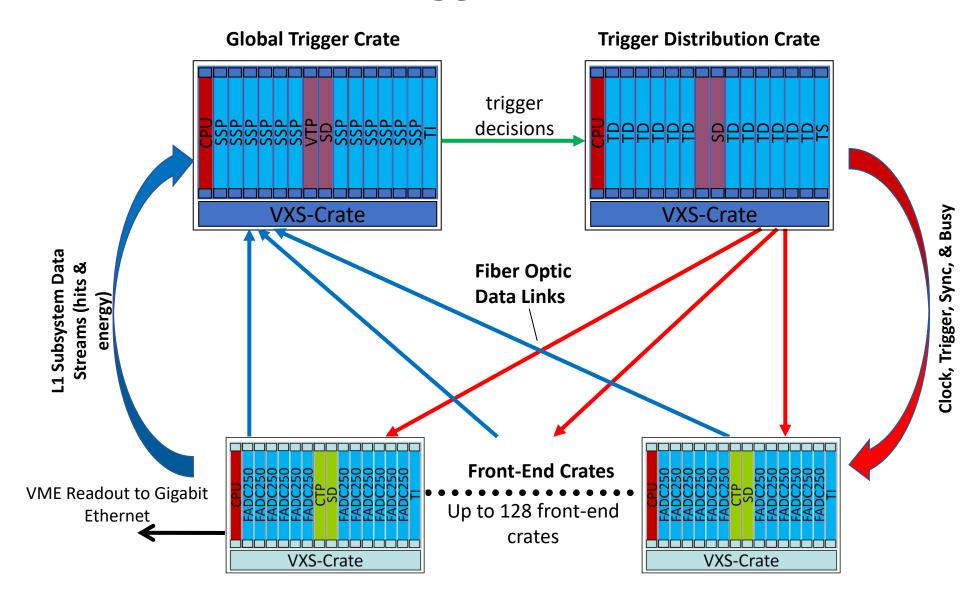
PARTICLE DETECTORS



TOF walls (Plastic scintillators)

Cherenkov detectors

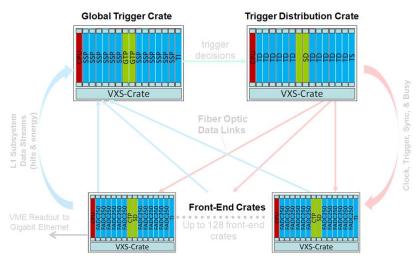
- Aerogel (n=1.05)
- Water (n=1.33)


Drift chambers

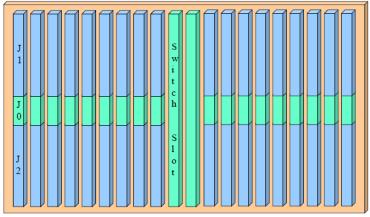
Channel count

	Detector	Current status	No. of channels		Ready?	
	Detector	Current status	ADC	TDC	icady:	
HKS	Drift Chambers	To be tested	N/A	360 + 360		
	TOF counters	All PMTs were checked	88	88		
	Aerogel Cherenkov	Test done	42	42	Yes	
	Water Cherenkov	New boxes under construction	48	48		
HES	Drift Chambers	To be tested	N/A	1098+360		
	TOF counters	To be tested	116	116		

Level 1 & Trigger Distribution

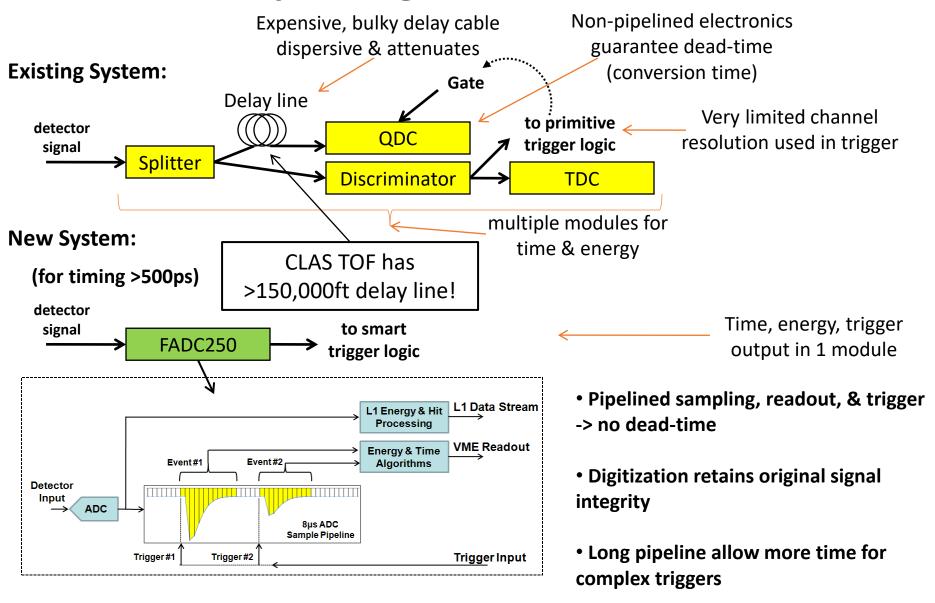


Crate Level – Signal Distribution

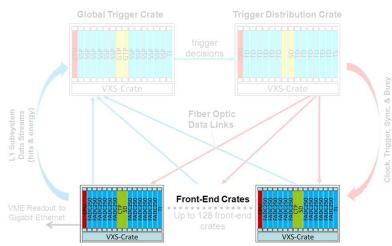

- VXS Based, 20 Slot Redundant Star Backplane
- VME64x backplane w/VXS (VITA 41 Standard) provides standard with high speed serial extension (new J0 connector)
- 18 Payload slots w/VME64x, 2 Switch slots
- Each payload slot has 8 high speed capable links
 (10Gbps each) to both switch slots

Crate Level Use:

- VME64x used for event readout
- VXS: Low jitter clock & trigger distribution
- VXS: Gigabit serial transmission for L1 data streams to switch slot for processing



VXS Backplane Physical Layout:


VXS (VITA 41 standard)
VME64x + high speed
serial fabric on J0

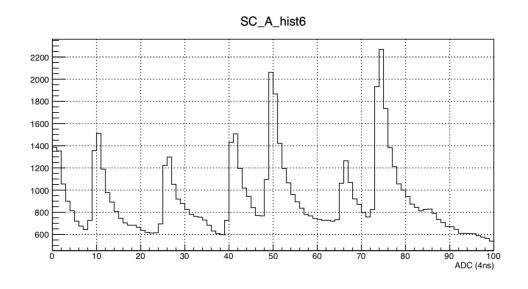
Capturing the Pulses...

Front-End Electronics: fADC250

- 16 Channel 12bit, 250Msps Flash ADC
- 8µs raw sample pipeline, >300kHz sustained trigger rate (bursts @ ~15MHz)
- Post-processing in customizable firmware to extract time, charge, and other parameters minimizing event size
- Module supports 2eSST VME transfers at 200MB/s transfer rate
- Large event block sizes (>100) to minimize CPU interrupt handling
- VXS P0/J0 outputs 5Gbps L1 data stream (hit patterns & board sum)
- Used in existing 6GeV program:
 Hall A BigBite
 Upgraded Hall A Moller Polarimeter

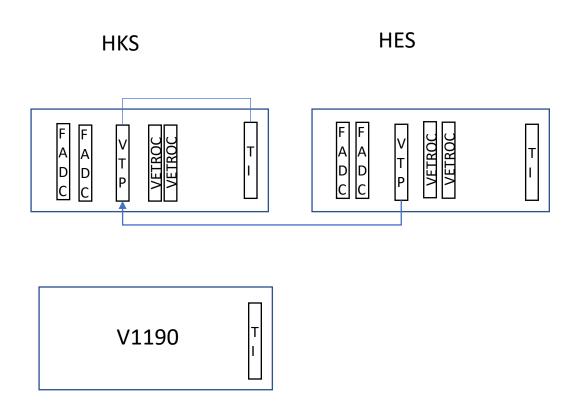
JLab-FADC250:

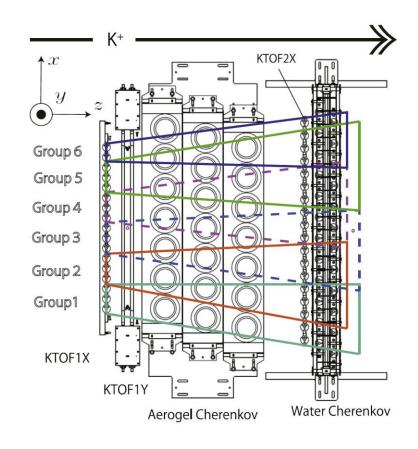
Channel count


	Detector	Current status	No. of channels		Ready?	
	Detector	Current status	ADC	TDC	ready:	
HKS	Drift Chambers	To be tested	N/A	360 + 360		
	TOF counters	All PMTs were checked	88	88		
	Aerogel Cherenkov	Test done	42	42	Yes	
	Water Cherenkov	New boxes under construction	48	48		
HES	Drift Chambers	To be tested	N/A	1098+360		
	TOF counters	To be tested	116	116		

FADC = 88 + 42 +48 +116 = 294 channels = 19 FADCs = 2 VXS crates V1190 = 2268 channels = 18 V1190 = 1 VME64X crate TOF = 204 channels = 7 V1290 = 8 F1 = 3 VETROC

If not running with SBS or NPS most likely enough FADCs Can use HMS electronics BPM rasters: 2 FADC


Data rates


- Rough estimates
 - HKS = 1 MHz
 - HES = 1 MHz
 - Coincidence = 1MHz x 1 MHz x 20 ns = 2 KHz
- Plan for up to 20 KHz desirable
- Using CODA3 and event blocking should be doable (similar to CLAS12) will be tested during NPS
- Need to evaluate detector occupancies
- If useful can record full FADC waveforms

Example scintillator SoLID beam test

Trigger

Can program VTP for coincidences between scintillators
If use VETROC instead of V1190 could add Drift Chamber to trigger

Additionnal electronics

- Beamline info
 - Target BPM
 - Raster
 - 1C12 BPM cabling

To do / Testing

- Bench testing and testing with detector VETROC
- Setup FADC trigger with VTP
- Setup testing in ESB

Additionnal detectors

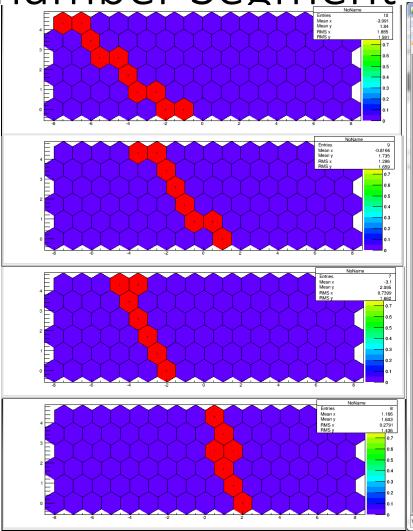
MCP PMTs

• MRPC

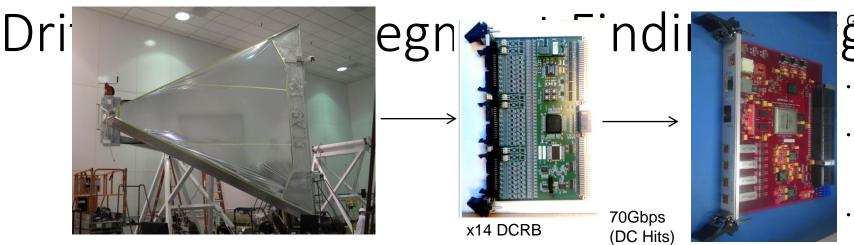
Would need dedicated new electronics

Conclusion

- HKS and HES
 - FADC = 88 + 42 +48 +116 = 294 channels = 19 FADCs = 2 VXS crates
 - V1190 = 2268 channels = 18 V1190 = 1 VME64X crate
 - TOF = 204 channels = 7 V1290 = 8 F1 = 3 VETROC
 - Could use HMS/NPS/SBS hardware
- CODA3 with event blocking should allow 20 kHz trigger rate
- Digital trigger using FADC and VTP
- If use VETROC instead of V1190 can include in L1 trigger (High res TOF and Drift Chamber)

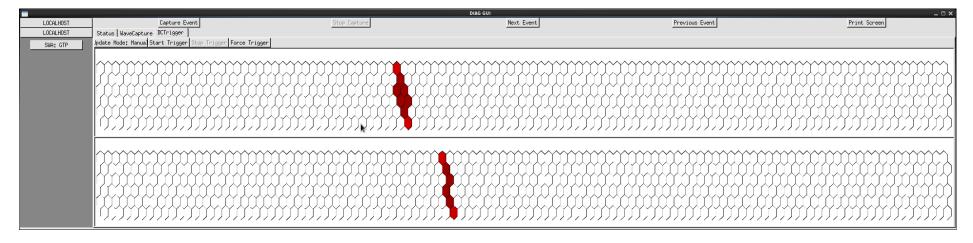

Backup

CLAS12


Detector	Can be in trigger?	Will be in trigger?	Trigger Algorithm
ECAL/PCAL	Yes	Yes	U/V/W Clustering
DC	Yes	Yes	Segment Position/Angle Finding
CTOF/FTOF	Yes	Yes	Hit based
HTCC/LTCC	Yes	Yes	Hit based
FT	Yes	Yes	3x3 Clustering
CND	Yes	No	N/A
SVT	Yes	No	N/A
RICH	Yes	No	N/A
MicroMegas	No	No	N/A

• CLAS12 triggering will support geometric matching (e.g. drift chamber segment points to clusters, etc...)

Drift Chamber Segment File Wespaliers Luto general de into common aligle, VHDL




```
<u>File Edit Search View Encoding Language Settings Macro Run Plugins Window ?</u>
  1 library ieee;
      use ieee.std_logic_1164.all;
      use ieee.std_logic_arith.all;
      use ieee.std logic unsigned.all;
      use work.utils_pkg.all;
  8 =-- Note: This source is auto generated by dctrackbin.C
              This VHDL file should be modified/regenerated by changing the .C source.
 11 |entity dcsegfinder is
          generic(
              DC_ARRAY_START : integer := -7;
              DC ARRAY STOP : integer := 6
 16
          port(
                             : in std_logic;
              SEGMENT_THR
                             : in std_logic_vector(2 downto 0);
              DC ARRAY
                                : in slv6a(DC ARRAY START to DC ARRAY STOP);
              SEG HIT A
                             : out std logic vector (15 downto 0)
          );
 24 end dcsegfinder;
 26 Farchitecture synthesis of dcsegfinder is
          function seghitsum(hits : std logic vector) return std logic vector is
              variable result : std logic vector(2 downto 0);
              result := (others=>'0');
              for I in hits'range loop
                  if hits(I) = '1' then
                     result := result + 1;
                  end if;
              end loop;
              return result:
           end seghitsum;
          SEG_HIT_A(0) <=
              '1' when SEGMENT THR <= seghitsum((DC ARRAY(-1)(0) or DC ARRAY(0)(0))&(DC A
          SEG HIT A(1) <=
              '1' when SEGMENT_THR <= seghitsum((DC_ARRAY(-1)(0) or DC_ARRAY(0)(0))&(DC_A
              '1' when SEGMENT THR <= seghitsum((DC_ARRAY(-1)(0) or DC_ARRAY(0)(0))&(DC_A
              '1' when SEGMENT THR <= seghitsum((DC ARRAY(0)(0) or DC ARRAY(1)(0))&(DC AR
          SEG HIT A(2) <=
VHSIC | length: 20797 lines: 178
                            Ln:1 Col:1 Sel:0
                                                                   ANSI
                                                                                 INS
```


- prottipe VXS concentrator card
- Receives all DC hits from DCRB
- Searches for track segments and reports position/angle to next trigger stage
- VTP (mentioned later in talk) with be used in CLAS12

- Scope like interface on GTP allows real-time display of found segments by trigger logic
 - Cosmic event shown where only 1 segment was the trigger condition

