HKS Target Design and Status

David Meekins

3 March 2023

Design Status

- Design is in concept stage
 - Solid target concept complete
 - Gas targets will need input from collaboration
- Exploring 2 options
 - System with solid targets only
 - System with both fluid and solid targets
- Both systems require cryogenic cooling
 - Pb and Li both benefit from this
 - He and Hydrogen gas cells will need it to reach proposed densities
- A simplistic method for optimization of the cells/solid targets has been developed
- Fluid systems are designed to appropriate Codes and Standards
 - Somewhat limiting

"Original" Proposal (circa 2022)

- Solid targets
 - Some basic solid targets
 - C, Al, B4C etc.
 - More Challenging
 - Lead, Ca40,48, Li6 etc.
- Gas Cells
 - H2, He3 and He4
 - Tuna can with vertical axis perpendicular to the beam
 - Diameter is 20 cm
 - Total Al thickness 162 mg/cm^2
 - Gas pressures low

Optimization of the Cells

- Assumptions for improvement
 - Thinner cells walls
 - Higher fluid densities
 - Smaller diameter
- Plan to use actively filled cells
 - This is contrast to the tritium target were the cells were filled with a static pressure
 - Two gas isotopes can be used concurrently
 - One gas species at a time (e.g., H2 and D2)
- Requires gas handling system
 - PREX target did not requrie

Status of Optimization

- Cell geometry
 - 7.5 cm tuna can
 - Wall thickness depends on fluid pressure
 - Height of thin section is 2 cm
 - Mechanical knife edge sealing system
 - No welding on cell or cell block
- Fluids: 2 options
 - Option 1: Fluid pressure 60 psia wall thickness 0.13 mm
 - Option 2: Fluid pressure: 130 psia wall thickness 0.25 mm
 - Operate He targets at 5.6K
 - Operate Hydrogen targets at 35K
- This improves the ratio of fluid to target cell wall as well as overall thickness
- Smaller cell form factor will be easier to design around

Comparison Three concepts are compared

Fluid	2022 Cell 2022		Option 1) P=60 psia		Option 2) P=130 psia		Fluid only	Fluid only
	ρt fluid	Fluid to wall	ρt fluid	Fluid to wall	ρt fluid	Fluid to wall	#1 to 2022	#2 to 2022
	g/cm^2		g/cm^2		g/cm^2			
H2	54	0.33	24	0.35	61	0.45	1.13	1.13
D2	-	-	50	0.73	133	0.99	-	-
He3	165	1.02	322	4.7	566	4.2	1.95	3.4
He4	228	1.41	803	11.8	998	7.4	2.75	7.4

Thermal Loads

Target Matl Material	Wall thick (mm)	Rho of wall (g/cm^3)	Length (cm)	lmax (microA)	Nom Thick (gm/cm^2)	Density (g/cm^3)	Actual Thick (mm)	Q in wall (W)	Q in tgt (W)
H2	0.25	67.5	7.5	20	0.061	0.008	75	4.9	5.5
D2	0.25	67.5	7.5	20	0.133	0.018	75	4.9	6
He3	0.25	67.5	7.5	20	0.566	0.0755	75	4.9	32
He4	0.25	67.5	7.5	20	0.998	0.133	75	4.9	41
CH2				2	0.5	0.88	5.6		1.3
Li6				50	0.1	0.53	2		10
B4C(11)				50	0.1	2.52	0.5		8.5
с				50	0.1	1.8	0.5		8.5
AI				50	0.1	2.7	0.38		9
Ca40				50	0.075	1.5	0.5		7.5
Ca48				50	0.09	1.8	0.5		7.5
PB208				25	0.114	11.38	0.1		5

Analysis of Hall C Ca Solid Target

- 80 microA
- Heat sink 30K
- 2x2 mm raster
- Max temp 350K
 - Similar for Li
- This will not be any problem for HKS
- Still need to study lead

Concept Cell/Block Design

- Cell and block fabricated from ASTM B209 7075
 aluminum
- All metallic seals no welding
- Cell is machined and measured to high accuracy.
 - 20% deviation on thin wall cell
 - 10% deviation on thicker wall cell
- Expect ~10% density reduction at full current
- Out of plane acceptance is larger than +/- 4 deg
- Fairly easy to fabricate
 - We have similar models with smaller radius

Solid Targets

- Lead and calcium will present challenges
 - Lead will need to be cryogenically cooled with good thermal conductivity
 - Realistic thickness will need to be at least 0.1 mm
 - Ca targets will need special handling
 - Ca48 stock at Jefferson Lab is highly compromised
 - Recommend purchasing new Ca48 foil (\$50K to \$60K)
- Other solid targets are relatively simple to work with
 - Proposed thickness are OK
 - Multi-foil: reduce to +/- 5 cm to closer match cell length
- Design path:
 - Combine latest Hall C solid target ladder with PREX/CREX motion system and T2 target style heat sink.

Solid Target Ladder

- Solid target design concept
- All components are aluminum 7075
- Target material is clamped into the frame with sufficient force to ensure good Kc
- Threaded clamp screws into heat sink
- Nuclear grade anti-seize is used to enhance Kc and prevent galling
- Clamp ring prevents spinning of the target foil
- Proven to work will all targets except lead
 - Has not been tested with lead
 - Thermal simulations are in process

Motion System

- Single axis motion system
- Feedthru via bellows
 - Cryo and target fluids are fed thru top flange
 - Thermometry located on ladder
- Position repeatable to better than 20 microns.
- Drive control system is already installed in Hall C

Scattering Chamber

- Will need to work with collaboration and Hall C engineering to develop this design
- Earlier we can start on this the better

