Hypernuclear Physics Workshop 2023 at JLab

Hypernuclear decay pion spectroscopy at MAMI, Germany

Contents

- Motivation
- Hypernuclear Decay
- Experimental Principle
- Hypernuclear results from A1 MAMI
- Future Prospects

The University of Tokyo Sho Nagao

2023/03/03

Physics Motivation

Λ binding energies of Λ hypernuclei play an important rule to understand ΛN interaction nuclear medium. Light hypernuclei is one of the good probe thanks to precise calculations and data.

- A binding energy of hypernuclei provided by Emulsion in 1960-70's with a few 10 - several 100 keV precision and 50 keV systematic?
- Inconsistency have appeared because of recent progresses of few-body calculation and new data, for example, Charge Symmetry Breaking Effect, Hypertriton Lifetime-BindingEnergy puzzle etc.
- Since exp. data do NOT have enough accuracy, much more accurate data are important discussing above items.

Hypernuclei database (https://hypernuclei.kph.uni-mainz.de/)

Walter H. Barkas, Nuclear Research Emulsions (1973)

Hypernuclear Formation - Decay

Experimental Principle

- Stopped hypernucleus emits monochromatic charged-pion with 2-body weak-decay
- Mass of parents hypernucleus can be deduced from the pion momentum only
- Precise measurement of monochromatic pion from hypernuclear weak-decay
- High-resolution spectroscopy could be achieved for hypernuclear ground-state

Method	р	∆р/р	ΔΜ
HI col.	0.3 GeV/c	10 ⁻²	5 MeV
(e,e'K+)	1 GeV/c	10-4	0.5 MeV
DPS	0.1 GeV/c	10 ⁻⁴	0.1 MeV

First Proposal at JLab

The first proposal was submitted as E08-012 "Study of Light Hypernuclei by Pionic Decay at JLab" by L.Tang *et al*.

- > Enge as π^- spectrometer
- HKS as K⁺ tagger (or HRS@Hall-A)
- Both spectrometers were used on the hypernuclear experiment (E01-011), in ESB now.
- We could not run at JLab because 12 GeV upgrade project started from 2011

Mainz Microtron (MAMI)

A1 Hall at MAMI

Ee'(calc) - Ee'(measure)

Observation of monochromatic pion from ${}^{4}_{\Lambda}H$

Momentum distribution on Spek-C

- ➤ The first observation of decay pions from ⁴_ΛH on continuous background through this method
- Background shape could be reproduced with Quasi-Free Σ decays
- Peak resolution of 200 keV (FWHM)
- ▷ p = 132.92±0.02(stat.) MeV/c

Best resolution & Best precision

 B_{Λ} (MAMI 2012) = 2.12 ± 0.01 ± 0.09 (MeV) B_{Λ} (MAMI 2014) = 2.157 ± 0.005 ± 0.077 (MeV)

Latest A = 4 Level Scheme

 $\Delta B^{CSB}({}^{4}_{\Lambda}He(1^{+}) - {}^{4}_{\Lambda}H(1^{+})) = + 0.29 \rightarrow -0.09 \text{ MeV}$ $\Delta B^{CSB}({}^{4}_{\Lambda}He(0^{+}) - {}^{4}_{\Lambda}H(0^{+})) = + 0.35 \rightarrow 0.23 \text{ MeV}$

NOTE: $\Delta B(^{3}He - {}^{3}H) \sim -0.07 \text{ MeV}$

Large ΔB^{CSB} exists for the ground state though ΔB^{CSB} becomes smaller. M1 transitions have large difference $\rightarrow \Lambda N CSB$ has spin-dependent $\rightarrow CSB$ problem became much more complex

On going project

We successfully observed decay-pion from ${}^4_{\Lambda}H$

Other Hypernucleus

Better accuracy

New Target

- Hyper-fragments more efficient
- Experiment with low mass target would be fine
- \succ Be \rightarrow Li

- Lower air dose by using lower beam current
- ➢ 90 deg tilted target
- Maximize hyper yield

Target

 π^{-}

Beam

S

pectrometer

Minimize struggling

- > New 90 deg tilted Li target
- ➤ Last: ⁹Be 47mg/cm² 40 µA
- New: Li 2700 mg/cm² 0.5 μA

New Beam-Energy Measurement

Accuracy of beam energy for elastic-scattering measurement limits our systematics

Run in 2022

- > Decay pion spectroscopy run in Sept. Oct 2022 with a new Li target
- Data analysis is ongoing now
- Spectrometer calibration will perform in 2023

Summary

Hypernuclear measurement

- Important inputs for ΛN interaction and NS EOS
- More accurate measurement is necessary especially for light hypernuclei
- Accurate measurement technique "Decay Pion Spectroscopy" Original proposal at JLab, Established at MAMI
- > Observation of ${}^{4}_{\Lambda}H$ peak
 - at 132.92 \pm 0.02(stat.) MeV/c with a resolution of 0.2 MeV/c (FWHM) @MAMI2012 Better precision @MAMI2014 (B_A = 2.157 \pm 0.005 \pm 0.077 MeV) Important input discussing CSB effect on A=4 hypernuclear system

$> {}^{3}_{\Lambda}H$ measurement

Important measurement resolving hypertriton puzzle

Data taking was finished in 2022, Spectrometer calibration will be in 2023