Structure of hypernuclei: What will happen by the coupling of a Λ particle?

Masahiro Isaka, Hosei University

Hypernuclei

Normal nuclei

- Nucleons
 - protons & neutrons

Hypernuclei

- Nucleons and hyperon(s) (Λ , Σ , Ξ)
- Several kinds of hypernuclei exist
 - Today's talk: single Λ hypernuclei

(Normal) nuclei

 Σ particle

 Ξ hypernuclei

Current situation of Λ hypernuclear studies

Hashimoto & Tamura, PPNP **57** (2006), 564.

i abconvad ca far Draduct

Production process of Λ hypernuclei

and Λ hypernuclear production by heavy ion collisions, etc.

Now, Λ hypernuclear chart is extended more!

Current situation of Λ hypernuclear studies

Hashimoto & Tamura, PPNP **57** (2006), 564.

Observed data: Λ binding energy \mathbf{B}_{Λ}

A most basic and important quantity

Hypernuclei observed so far

Now, Λ hypernuclear chart is extended more!

Current situation of Λ hypernuclear studies

Observed data: Excited states

Hypernuclei observed so far

Now, Λ hypernuclear chart is extended more!

γ -ray spectroscopy data for bound states

(e,e'K⁺) reaction spectroscopy at JLab : not only bound but also unbound states

Grand challenges of hypernuclear physics

Interaction: To understand baryon-baryon interaction

- 2 body interaction between baryons (Y: hyperon, N: nucleon): YN, YY interactions
 - → Studied through hypernuclei due to difficulty of YN scattering exp.
- Many-body interaction
 - → Important issue in recent studies

Structure: To understand many-body system of nucleons and hyperon

Many-body force and "Hyperon puzzle" in neutron star

Hyperon puzzle

Softening of EOS by hyperon mixing

How do we resolve?

Baryon many(three)-body force

If strong repulsion exists acting in hyperonic channels, EOS of neutron star matter becomes stiff

Important issue in hypernuclear physics: to reveal effects of hyperonic many-body force in Λ hypernuclei

Grand challenges of hypernuclear physics

Interaction: To understand baryon-baryon interaction

- 2 body interaction between baryons (Y: hyperon, N: nucleon): YN, YY interactions
 - → Studied through hypernuclei due to difficulty of YN scattering exp.
- Many-body interaction
 - → Important issue in recent studies

Structure: To understand many-body system of nucleons and hyperon

- •Addition of hyperon(s) shows new aspects of nuclear structure
 - e.g.) structure change by hyperon(s)
 - No Pauli exclusion between N and Y
 - YN interaction is different from nuclear force

Hyperon as an impurity in hypernuclei

Structure of Λ hypernuclei

Λ hypernuclei observed so far

- ullet Concentrated in light Λ hypernuclei
- Most have well-developed cluster structure

Cluster structure in light hypernuclei

Famous example of "impurity effects"

Example: ${}^7_{\Lambda}Li$

Motoba, *et al.*, PTP**70**,189 (1983) Hiyama, *et al.*, PRC**59** (1999), 2351. Tanida, *et al.*, PRL**86** (2001), 1982.

- Λ reduces inter-cluster distance b/w α + d of the core nucleus ⁶Li
- Confirmed through B(E2) reduction

Toward heavier and exotic Λ hypernuclei

◆Experiments at JLab, J-PARC, ... etc.

Heavier(sd-shell and more) hypernuclei can be produced

What will happen if a Λ is coupled to nuclei with various structures ?

Deformation of nuclei

Most of nuclei are deformed except for magic nuclei

60°

β

 $\beta = 0$

Spherical

Nuclear quadruple deformation (β,γ)

 $\gamma = 60^{\circ}$

()

- β : degree of quadrupole deformation
- γ: (tri)axiality

Oblate deformation short axis symmetry

Prolate deformation long axis symmetry

Deformation of nuclei

Most of nuclei are deformed except for magic nuclei

60°

ß

 $\beta = 0$

Spherical

 \mathbf{N}

 $\sqrt{\gamma} \approx 30^{\circ}$

N°

 $\gamma = 0^{\circ}$

Nuclear quadruple deformation (β,γ)

 $\gamma = 60^{\circ}$

()

- β : degree of quadrupole deformation
- γ: (tri)axiality

Oblate deformation short axis symmetry

Density distribution with AMD calc

Triaxial deformation no symmetry axis

Prolate deformation long axis symmetry

What will happen if a Λ particle is coupled to nuclei ?

• Dynamical changes of nuclear structure

- Changes of cluster structure
- Deformation changes

\bullet Sensitivity of the Λ binding energy B_{Λ} on nuclear structure

- Dependence of B_{Λ} on nuclear deformation
- Mass number A dependence & many-body force effects

ullet Coupling of Λ particle in p orbit to clustering/deformed core nuclei

- Genuine hypernuclear states
- \bullet Possibility to probe nuclear deformation using Λ particle

Many authors predict that Λ in s-orbit reduces nuclear deformation

Antisymmetrized molecular

Skyrme-Hartree-Fock (SHF)

Relativistic mean-field (RMF)

RMF & SHF

³₄C (+11.0 MeV)

-0.2 -0.1 0 0.1 0.2 0.3 0.4

 $\beta = \sqrt{5\pi/3} O / 7B^2$

Deformations/level structure with beyond-mean-field

J.W. Cui, X.R. Zhou, H.J. Schulze, PRC**91**,054306('15)

H. Mei, K. Hagino, J.M. Yao, T. Motoba, PRC**91**, 064305(2015); **97**, 064318(2018)

... and so on

H. J. Schulze, et al., PTP**123**, 569('10)

How to analyze from energy surface

Example: ¹²C with AMD(antisymmetrized molecular dynamics)

- Energy variation at each β (and γ) \rightarrow energy curve as a function of β
- Energy minimum at (β,γ)

How to analyze from energy surface

Example: ¹²C with AMD(antisymmetrized molecular dynamics)

- Energy variation at each β (and γ) \rightarrow energy curve as a function of β
- Energy minimum at (β,γ)

How to analyze from energy surface

Example: ¹²C with AMD(antisymmetrized molecular dynamics)

- Energy variation at each β (and γ) \rightarrow energy curve as a function of β
- Energy minimum at (β,γ)

Deformation change by Λ in *s*-orbit

How to analyze from energy surface

M.I, et al., PRC83, 044323(2011)

Example: ¹²C with AMD(antisymmetrized molecular dynamics)

- Energy variation of hypernucleus
 - \rightarrow energy minimum moves to smaller β with Λ in *s*-orbit

Λ in *p*-orbit enhances nuclear deformation

Deformed Skyrme-

Triaxially deformed

Antisymmetrized molecular dynamics (AMD)

relativistic mean-field Hartree-Fock (DSHF) W. X. Xue, et al., PRC**91**, 024327(2015) M.I, et al., PRC83, 044323(2011) Bi-Cheng Fang et al., EPJA**56**,11(2020) -86 ⁵¹₂V (+20.8 MeV) ⁵¹V (+14.6 MeV) ^{©⊗∧}1(+11.51MeV -431 E [MeV] ⁵¹_{Ad}V (+ 6.6 MeV) -78^2(+1.65MeV adding Λ in *p* orbit E (MeV) +2.2 MeV (β=0) -432 $^{13}_{\Lambda}\mathrm{C}$ -80 E (MeV) -100 <u>–</u> 0.0 -433 +0.8 MeV -820.2 0.4 ß -434 -0.4 -0.2 0.0 0.2 0.4 –0.1 Me -435 β_2 0.2 0.4 -0.2 0.0

Deformation change of Λ in higher orbits such as *d*-orbit is also predicted by several papers: W. X. Xue, et al., PRC**91**, 024327(2015), X. Y. Wu, et al., PRC**95**, 034309(2017)

Why does Λ change nuclear deformation?

- Λ in *s* orbit is deeply bound at small β , while Λ in *p* orbit prefers deformation
- Competition b/w Λ binding energy and energy surface of core nucleus

"binding energy of Λ " vs. "energy surface of the core nuclei"

Energy surface of core nuclei

Shape of energy surface is related to nuclear structure

"Overlap between A and N" is the key!

 Λ in *s*-orbit (*p*-orbit) is deeply bound with smaller β (larger β) due to larger overlap between Λ and nucleons

Λ in <i>s</i> orbit	Small β	Large β
		-418C P
Overlap b/w Λ & N	Large	Small
$\Lambda \mathrm{N}$ attraction	Large	Small
Λ in ${\it p}$ orbit		
	Small β	Large β
Overlap b/w Λ & N	Small	Large
ΛN attraction	Small	Large

Structure dependence of "impurity effects" Example: ²¹ Ne (prediction by AMD calc) M. Isaka, et al., PRC83, 054304(2011) • Shrinkage/deformation change are larger in α + ¹⁶O + Λ cluster states, which appears as difference in intra-band B(E2) reduction **Ground band** $K^{\pi} = 0^{-} (\alpha + {}^{16}O)$ band cf. $^{7}_{\Lambda}$ Li 2 fm 2 fm ⁶Li ²⁰Ne $^{21}_{\Lambda}\text{Ne} \quad 0^+_1 \otimes \Lambda^-$ ²⁰Ne $^{21}_{\Lambda}\text{Ne}$ $1_1 \otimes \Lambda^{-1}$ 0^{+} ²¹[^]Ne ²⁰Ne ²¹^Ne α ²⁰Ne $r_{RMS}(fm) \ 0^+ \otimes \Lambda s^{\Lambda} r_{RMS}(fm) \Delta r_{RMS}(fm)$ r_{RMS}(fm) K^π=0⁺ $0 \otimes \Lambda s r_{RMS}(fm) \Delta r_{RMS}(fm)$ $K^{\pi} = 0^{-}$ shrinkage (1/2)-3.15 0+ 2.97 (1/2)+2.92 -0.05 -0.113.27 1-(3/2)-3.15 -0.11(3/2)+2.91 -0.052.96 2+ (5/2)-3.13 -0.117 Li (5/2)+2.91 -0.053.24 3-(7/2)-3.14 -0.10(7/2)+2.87 -0.06 (9/2)--0.123.11 2.93 4+ 3.23 5-(9/2)+2.88 -0.04(11/2)-3.11 -0.13(13/2)-(11/2)+3.06 -0.172.81 -0.05 3.23 7-2.87 6+ (15/2)-3.05 -0.18 (13/2)+2.83 -0.04

What will happen if a Λ particle is coupled to nuclei ?

• Dynamical changes of nuclear structure

- Changes of cluster structure
- Deformation changes

\bullet Sensitivity of the Λ binding energy ${\sf B}_\Lambda$ on nuclear structure

- \bullet Dependence of ${\rm B}_{\Lambda}$ on nuclear deformation
- Mass number A dependence & many-body force effects

ullet Coupling of Λ particle in p orbit to clustering/deformed core nuclei

- Genuine hypernuclear states
- \bullet Possibility to probe nuclear deformation using Λ particle

Dependence of B_{Λ} on nuclear deformation

Example:

¹¹ABe

\mathbf{B}_{Λ} is smaller in largely deformed state than less deformed state

- Different deformations coexist near the ground state
 - Λ in s orbit reduces it, but the difference remains
 - B_{Λ} is different due to overlap \rightarrow If different deformation coexist,

Dependence of B_{Λ} on nuclear structure

 $^{21}_{\Lambda}Ne$

B_{Λ} is smaller in cluster states than mean-field like states **Example:**

- Different structures coexist near the ground state
 - Λ in s orbit changes them, but the difference remains
- Λ is localized around ¹⁶O in α + ¹⁶O + Λ state \rightarrow difference of B_A

Dependence of B_{Λ} on nuclear structure

Which cluster does a Λ particle prefer in α + ¹⁶O + Λ state?

A-dependence of B_{Λ} and many-body force effects

By describing structure of hypernuclei properly using appropriate ΛN interaction, many-body force (YNN) effects can be seen in A dep. of B_{Λ}

Some examples of theoretical attempts

Energy difference b/w B_A^{cal} with ΛN force and B_A^{exp} is a room for many-body force

AMD w/ meson exch. ΛN force (Nijmegen)

- Taking into account hypernuclear deformation
- Ambiguity of ΛN potential vs. strength of ΛNN force

auxiliary field diffusion Monte Carlo (AFDMC)

D. Lonardone et al., arXiv:1711.07521v3 (2018)

- Isospin dependence of Λ NN force
- Related to future JLab exp. (E12-15-008)

Isospin-dependence of ΛNN force

auxiliary field diffusion Monte Carlo (AFDMC) calculation

D. Lonardone et al., arXiv:1711.07521v3 (2018)

- The authors consider isospin dependence of $\Lambda \rm NN$ force related to charge symmetry breaking (CSB) in hypernuclei
- Isospin dependence is examined by artificially varying a parameter C_T

$$v_{\lambda ij}^T \,\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j = -3 \, v_{\lambda ij}^T \, \mathcal{P}_{ij}^{T_N=0} + (1 + C_T) \, v_{\lambda ij}^T \, \mathcal{P}_{ij}^{T_N=1}$$

 $C_T = 0$: original Λ NN corr. to Λ - Σ^0 mixing mech. $C_T = -1$: $T_N = 1$ component is off $C_T = -2$: changing sign of $T_N = 1$ comp.

Most important in n-rich systems

Isospin-dependence of ΛNN force

D. Lonardone et al., arXiv:1711.07521v3 (2018)

$$v_{\lambda ij}^T \, \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j = \\ = -3 \, v_{\lambda ij}^T \, \mathcal{P}_{ij}^{T_N=0} + (1 + C_T) \, v_{\lambda ij}^T \, \mathcal{P}_{ij}^{T_N=1}$$

- Isospin dep. largely affects B_{Λ} in heavier $Z \neq N$ hypernuclei
- Exp. data are not sufficiently accurate in $40 \leq A \leq 50$

C_T can be determined by comparing with future JLab exp. (E12-15-008), which provides us new insight on many-body force

Related topic: charge symmetry breaking (CSB)

\diamondCSB in A=4 \Lambda hypernuclei

A.Esser et al., Phys. Rev. Lett.**114**,232501(2015) T.O. Yamamoto, et al., PRL**115**, 222501('15)

cf. Charge symmetry in nuclei

- Binding energy, energy levels, ... etc. are almost the same in mirror nuclei except for Coulomb effects
- Charge symmetry of nuclear force

In ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He

- Large difference in ${\rm B}_{\Lambda}$ and ${\rm Ex(1^+)}$
- Ap and An interactions are different?
- Many-body effects with hyperon mixing?

Related topic: charge symmetry breaking (CSB)

CSB in A=7 hypernuclear isotriplet (T=1)

• Different trend from A=4 Λ hypernuclei: larger B_{Λ} as N increases

What will happen if a Λ particle is coupled to nuclei ?

• Dynamical changes of nuclear structure

- Changes of cluster structure
- Deformation changes

\bullet Sensitivity of the Λ binding energy B_{Λ} on nuclear structure

- Dependence of B_{Λ} on nuclear deformation
- Mass number A dependence & many-body force effects

ullet Coupling of Λ particle in p orbit to clustering/deformed core nuclei

- Genuine hypernuclear states
- \bullet Possibility to probe nuclear deformation using Λ particle

Genuine hypernuclear states in ⁹, Be

⁹_{Λ}Be: axially symmetric 2 α clustering

Two rotational bands as *p*-states

- Anisotropic *p* orbit of Λ hyperon
 Axial symmetry of 2α clustering

 \rightarrow p-orbit parallel to/perpendicular to the 2 α clustering

p states in ⁹ Be

⁹Be "9Be analog states"

Forbidden for n in ⁹Be due to Pauli principle

"genuine hypernuclear states"

Genuine hypernuclear states in ⁹, Be ⁹_{Λ}Be: axially symmetric 2 α clustering Anisotropic *p* orbit of Λ hyperon Two rotational bands as *p*-states Axial symmetry of 2α clustering \rightarrow p-orbit parallel to/perpendicular to the 2 α clustering Excitation energy [MeV] ${}^9_{\Lambda}B\epsilon$ Ex (MeV) 0.16 Be 202°≤θ<14° 0.14 perpendicular $\sigma_{2^{\circ}-14^{\circ}}$ [µb/0.25MeV] 90'0 1'0 1'0 1'0 parallel 15 \$ 10 #2 3-0.04 0.02 2^{+} R.H. Dalitz, A. Gal, PRL 36 (1976) 362. 190 200 170 185 205 175 180 195 160165 H. Bando, et al., PTP 66 (1981) 2118. MHYP - MA [MeV] O. Hashimoto et al., NPA **639** (1998) 93c. T. Motoba, et al., PTPS**81**, 42(1985).

Split of *p*-state in ${}^{9}_{\Lambda}$ Be

 ${}^{9}{}_{\Lambda}$ Be: axially symmetric 2α clustering

p-states splits into 2 bands depending on the direction of p-orbits

Genuine hypernuclear states in the other hypernuclei

Genuine hypernuclear states are predicted not only in ⁹_ABe but ¹⁰_ABe & ¹¹_ABe

Shell model + DWIA calc. by Umeya et al., EPJ Web of Conference 271, 01010(2022)

Genuine hypernuclear states in the other hypernuclei

Coupling of Λ in p orbit to symmetric cluster structure causes splitting of p states

Coupling of Λ in p orbit to triaxially deformed nuclei

Triaxial deformation

If nucleus is triaxially deformed, *p*-states can split into 3 different state

Triaxial deformation

Prolate deformation

Candidate: Mg hypernuclei

Observing the 3 different *p***-states is strong evidence of triaxial deformation**

Results: ${}^{27}_{\Lambda}Mg$

• 3 bands are obtained by Λ in *p*-orbit \rightarrow Splitting of the *p* states

Summary

In Λ hypernuclei, by the coupling of Λ , we can expect following phenomena:

Dynamical changes of nuclear structure

- Changes of cluster structure
- Deformation changes

Sensitivity of \mathbf{B}_{Λ} on nuclear structure

- B_{Λ} depending on nuclear deformation
- Both hyperonic interactions and structure of hypernuclei are important in A-dep. of B_{Λ}

 \rightarrow Many-body effects in Λ hypernuclei future exp. at JLab (E12-15-008)

Coupling of Λ particle to clustering/deformed core nuclei

- Genuine hypernuclear states not only in ${}^{9}_{\Lambda}$ Be but also ${}^{10}_{\Lambda}$ Be JLab E05-115
- Possibility to probe nuclear triaxial deformation using Λ in $^{\rm 27}{}_{\Lambda}{\rm Mg}$