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The very beginning: the Magnetic Multi Purpose Spectrometer



Second step: the E94-107 experiment proposal

Excerpt from the abstract  

of the proposal



Excerpt from the proposal (kinematical conditions and expected spectra in an ideal case)



To run experiment E94-107: 

Hardware implements were needed

To analyze E94-107 data:

innovative algorithms were ideated



Hardware implements

(two septa and a RICH detector)



Excerpt from the proposal of two septum magnets for forward angle physics in Hall A

Septum conceptual design: 
The septa were designed to serve not only hypernuclear spectroscopy experiments but also prospective experiments 

that detected particle scattered from 6° to 12.5°. They were the first septa ever used at JLab 𝜃 = 6°

𝜃

The septum shape was almost completely determined by two parameters: the distance d between the old and 
the new position of the target  (80 cm), and the magnet thickness T between the septum gap and the beam pipe, 
(2.5 cm.).

d determined:

1 The angular acceptance, that is equal to the HRS original design scaled by the factor D/135 (D is the length in cm 
of the trajectory between the new target and Q1, 135 cm is the distance between the old target and Q1). A bigger 
value of d allows a longer septum but decreases the angular acceptance. 
2 The position of the center of the septum that is given by the intercept of the lines originating from the old (O) 
the new (O') scattering chamber center (in the case of Figure above, making angles θ = 6° and φ = 12.5°, 
respectively, with the beam direction) 
3 The dimension of the gap that accepts all particles scattered in the acceptance cone. 
4 The value of the integral of the septum magnetic field along the trajectory that is proportional to the bending 
angle β = φ - θ should be, for obvious reasons, the smallest available value. When θ  is close to 6° , φ is equal to 
12.5 . At higher θ values, φ had to be greater than that and required, as a consequence, very high fields and 
superconducting coils

T, the magnet thickness between the gap and the beam pipe, determines, together with d, the septum physical 
length, L. L should be as long as possible because it is proportional to the integral of the magnetic field inside the 
septum. The longer L, the lower the required field inside the septum and, hence, the current density needed in 
the septum coils. L cannot exceed, however, the value that makes the septum edge hit the beam pipe. For this 
reason T should be as small as possible. The limit is give by the thickness of the coils, the dimension of the 
cryostat and the thickness of the iron between the coils and the beam pipe (it is needed to ensure good 
mechanical resistance and good magnetic field homogeneity inside the septum.

At θ values close to 12.5° , the limit is reached for φ because the septum approaches the Q1 edge. High magnetic 
fields are needed inside the septum. It is useless to decrease the length of the septum in order to allow smaller 
values of φ: the smaller value of the bending angle β = φ - θ never compensates, from the magnetic from the 
magnetic field value point of view, the reduced length of the septum. L is therefore, as explained above, fixed by 
the geometrical layout at θ = 6° or, in other words, by d and T

𝜃
φ

φ



A semi ordered winding, potted window frame type coil of 709 turns per 

pole supported by the cold iron yoke. 

Coil indirect cooling by conduction through the yoke.

The Superconductor was a single strand 1400 amp conductor operating 
at 665 amps with a Copper to superconductor ratio of 1.75:1 and 
Formvar coating

Septum technical design  



The RICH detector 

When a particle crossed the RICH, Cherenov photons were generated in a 15 mm thick 

liquid perfluorohexane radiator. The photon passed through 5 mm thick quartz slabs 

placed on the radiator exit window to propagate in a 10 cm proximity gap filled with 

methane. The photons  finally hit three pad planes that made up the cathode of a 2 mm 

gap Multi Wire Proportional Chamber (MWPC). A 300 mm thick CSI layer on the top of the 
three pad planes acted as photon converter with a quantum efficiency of ~ 20% around the 
wave length of λ = 160 nm. The electron migrated to the anode wire plane (at 2 mm from the pads) 
amplified by an avalanche in the high field at the anode wire. The corresponding signal from this 
avalanche was collected by the 11520 pads (8x8.4 mm2 each). As a consequence, a Cherenkov photon 
generated a cluster of contiguous fired pads “centered” around the avalanche at the wire. From the 
position of the cluster barycenter, the Cherenkov angle of the photons emitted by the particle.     



Innovative algorithms were ideated to address very difficult 
issues during the hypernuclear spectroscopy experiment 
analysis:

a) Use of the elementary reactions 𝑝 𝑒, 𝑒′ Λ and 𝑝 𝑒, 𝑒′ Σ0 to 
calibrate binding energy spectra

b) Calibration of instruments based on the fulfilment of 
physical laws to optimize Hall A  HRS spectrometer 
databases

c) Simultaneous checks of the variance and the average of 
measurements to obtain an effective Particle 
Identification system with the RICH detector. 

d) An innovative radiative correction method to clearly 
observe difficult to separate peaks in binding energy 
spectra.



Use of the elementary reactions 𝑝 𝑒, 𝑒′ Λ and 𝑝 𝑒, 𝑒′ Σ0

to calibrate binding energy spectra

If we plot the histogram of 𝐸𝑏𝑖𝑛𝑑 = 𝑀Λ − 𝐸𝐻
2 − 𝑝𝐻

2 and the acceptance of your spectrometer is 
adequate, you will obtain two peaks corresponding to Λ and Σ0 production respectively. The first peak 
should be centred at 0, the second at a value equal to the difference between the Σ0 and Λ masses.  If this 
does not happen your apparatus is not calibrated.  In this case, you change during the analysis the values of 
the primary electron beam and the central momenta and angles of the two HRSs in order to locate the two 
peaks at the right positions. When this two peaks appear at the right positions, your apparatus is calibrated.

In an experiment performed in Hall A, the energy of the primary electron beam and the central momenta and 
angles of the two HRSs, by which you determine the scattering angles and the momenta of the scattered particles 
are constant during all the experiment. However, their values are affected by uncertainties and if they differ by 
the nominal values set by the experiment kinematics your apparatus is uncalibrated.    

The apparatus can be nevertheless calibrated using the elementary reactions 𝑝 𝑒, 𝑒′ Λ
Defining:     𝐸𝐻 = 𝐸𝑒 − 𝐸𝑒′ − 𝐸𝑘 e the primary electron, e’ the scattered electron,                  

Ԧ𝑝𝐻 = Ԧ𝑝𝑒 − Ԧ𝑝𝑒′ − Ԧ𝑝𝑘 k the produced kaon



Calibration of instruments based on the 
fulfilment of physical laws

to optimize Hall A HRS spectrometer databases

It could happen that one is uncertain about the fact the 
instrument he is using is calibrated. This could be a problem if 
no sample of a precise known value of the physical quantity the 
instrument is measuring is available to calibrate the instrument. 
This is always the case when one deal with magnetic 
spectrometers. To overcome this issue we made use of the 
property that an instrument is calibrated if and only if a physical 
law that involves the physical quantity our instrument is 
measuring is fulfilled  



Definition of a measuring instrument:
A measuring instrument is a device that measures a physical quantity Y pertaining a determinate 
object by providing a response X related to the physical quantity value by a mathematical 
expression E(X): 

Y = E(X) 

For example: a mechanical weighing scale that provides us the mass M ≡ Y of an object by its 
spring deflection X that occurs when the object is placed on it. E(X) is assumed by us.

Definition of a not calibrated measuring instrument:
A measurement instrument is uncalibrated if the real mathematical expression R(X) that connects 
its response to the values of the physical quantity to be measured is different from the 
mathematical expression E(X) we assume for it.

R(X) ≠ E(X)

A check of a physical law which involves a physical quantity Y whose values are provided by an 
uncalibrated measuring instrument will not be of course fulfilled. The difference between the 
obtained response and the expected one will be however a precise function F[R(X) - E(X)] and 
because, by definition of measuring instrument, E(X) is always invertible from F[R(X) - E(X)] we 
can derive R(X) and hence calibrate the measuring instrument. 



A simple example: 

A weighing scale which measures masses 𝑀 and for which 

𝐸 𝑋 = 𝛼 ∙ 𝑋; 𝑅 𝑋 = 𝛼′ ∙ 𝑋 + 𝛽 ∙ 𝑋2 + 𝛾; α, α’, β, and γ constant, 

and hence: 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝛼 ∙ 𝑋 ≠ 𝑀𝑟𝑒𝑎𝑙 = 𝛼′ ∙ 𝑋 + 𝛽 ∙ 𝑋2 + 𝛾

A check of Newton’s law 𝐹 = 𝑀 ∙ 𝐴

(𝐹 force applied on an object of mass 𝑀, and 𝐴 the acceleration of the object)

will show the “unexpected” law 

𝐹 = 𝑀𝑟𝑒𝑎𝑙 ∙ 𝐴 =
𝛼′

𝛼
∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 +

𝛽

𝛼2
∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

2 + 𝛾 ∙ 𝐴

Observing this false dependence of 𝐹 on 𝑀, we are able to immediately calibrate our 
weighing scale, in other words to determine 𝑅 𝑋 . In fact, because 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝛼 ∙ 𝑋, 
we obtain 

𝑀𝑟𝑒𝑎𝑙 = 𝛼′ ∙ 𝑋 + 𝛽 ∙ 𝑋2 + 𝛾

𝑅 𝑋 = 𝛼′ ∙ 𝑋 + 𝛽 ∙ 𝑋2 + 𝛾



It is better to write Newton’s law in a form more useful for calibrating magnetic spectrometers:

In case of our uncalibrated weighing scale we have :

Or, in other words: 

𝐿 𝐹,𝑀, 𝐴 = 𝐴 ∙ 𝑃 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ≠ 0 (1)

𝑃 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is a polynomial in 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 . Our weighing scale is calibrated if and only if 

𝑃 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 0 (2)

In case of an uncalibrated weighing scale, that is 𝑃 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ≠ 0, to calibrate it  we have just to remember that, by 
definition, 𝑃 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝑀𝑟𝑒𝑎𝑙 − 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 and hence:

𝑀𝑟𝑒𝑎𝑙 = 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 𝑃 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 (3)

Expressing 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 as 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝐸 𝑋 we obtain:

𝑀𝑟𝑒𝑎𝑙 = 𝐸 𝑋 + 𝑃 𝐸 𝑋 = 𝑅 𝑋 (4)

𝑀𝑟𝑒𝑎𝑙 =
𝛼′

𝛼
− 1 ∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 +

𝛽

𝛼2
∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

2 + 𝛾 + 𝛼 ∙ 𝑥 = 𝛼′ ∙ 𝑥 + 𝛽 ∙ 𝑥2 + 𝛾 = 𝑅(𝑥)

In all the calibration procedure I id not care at all about E(X). I just experimentally determined 𝑃 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 . I used E(X) 
just at the very end to obtain R(X). I can determine 𝑀𝑟𝑒𝑎𝑙 through (3) even not knowing 𝑅 𝑋 !!!

𝐿(𝐹,𝑀, 𝐴) = 𝐹 −𝑀 ∙ 𝐴 = 0

𝐿 𝐹,𝑀, 𝐴 = 𝐹 −𝑀𝑟𝑒𝑎𝑙 ∙ 𝐴 − 𝐹 −𝑀𝑟𝑒𝑎𝑙 ∙ 𝐴 − 𝐹 + 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ∙ 𝐴 = 0 + 𝐴 ∙ 𝑀𝑟𝑒𝑎𝑙 −𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝐴 ∙
𝛼′

𝛼
− 1 ∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 +

𝛽

𝛼2
∙ 𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

2 + 𝛾 = A ∙ 𝑃(𝑀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)



Magnetic spectrometer calibration, that is optical data base optimization

In a magnetic spectrometer scattering variables are connected to focal plane coordinates 
through the equation:

𝑌 = 𝑇 ∙ 𝑋 (5)

With T 𝑌 =

𝛿
𝑦0
𝜗0
𝜑0

Ԧ𝑋 =

𝑥𝑓
𝑦𝑓
𝜗𝑓
𝜑𝑓

𝑥𝑓 and 𝑦𝑓 particle coordinates at the focal plane 𝜗𝑓 And 𝜑𝑓
angles that define the particle trajectory when it hits the focal plane

𝛿 he percentage difference between 
the particle momentum and the 
momentum of the spectrometer central 
trajectory, 𝑦0 the position 
along the target of the particle 
scattering point, and 𝜗0 and 𝜑0
the particle scattering angles

Putting aside mathematical  difficulties, equation (5) is completely equivalent to the equation Y=E(X) which 
connected measured masses Y and weighing scale responses X of the weighing scale.

optical database

Equation (5) has the form 𝑌𝑖 = σ𝑘𝑙𝑚𝑛 𝑇𝑖𝑘𝑙𝑚𝑛 ∙ 𝑋1
𝑘 ∙ 𝑋2

𝑙 ∙ 𝑋3
𝑚 ∙ 𝑋4

𝑛

I ,k ,l, m, and n on negative integer numbers



Five physical laws of the kind 𝐿(𝑌1, 𝑌2, 𝑌3, 𝑌4) ≡ 𝐿(𝛿, 𝑦0, 𝜃0, 𝜑0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 where analyzed:

𝐿(𝛿, 𝜃0, 𝜑0) ≡ 𝐸′ −
𝐸0

1+
𝐸0
𝑀
∙ 1−cos Θ

= 0 (1)

𝜃0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝜃 (2)
𝜑0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝜑 (3)

Elastic scattering law (𝐸0 and 𝐸′ particle energy before and after being scattered, Θ, 
scattering angle, 𝑀 target mass)

to be fulfilled by the angles 𝜃0 and 𝜑0 which define the direction of scattered 
particles, when a sieve slit is placed in front of the magnetic
spectrometer in order to make it detect particles scattered only at defined couple of

angles 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝜃 , 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝜑

𝑦0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑦 (4)
to be fulfilled when particles scatter off a point-like target, positioned at a 

definite position 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑦

𝐸𝑏𝑖𝑛𝑑𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑛 (5) 𝐸𝑏𝑖𝑛𝑑𝑛 the binding energy of the 𝑛𝑡ℎenergy state of a nucleus/hypernucleus

The whole magnetic spectrometer calibration method consisted in observing the 
possible experimental existence of equation like 

𝐿(𝛿, 𝑦0, 𝜃0, 𝜑0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑃 𝛿, 𝑦0, 𝜃0, 𝜑0

With 𝑃 𝛿, 𝑦0, 𝜃0, 𝜑0 a polynomial in 𝛿, 𝑦0, 𝜃0, and 𝜑0.

The calibration was straightforward. For example from (2)

𝜃𝑟𝑒𝑎𝑙 𝑥𝑓 , 𝑦𝑓 , 𝜃𝑓 , 𝜑𝑓 ≡ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝜃 = 𝜃0𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
𝑥𝑓 , 𝑦𝑓, 𝜃𝑓 , 𝜑𝑓 − 𝑃 𝛿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 , 𝑦0𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

, 𝜃0𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
, 𝜑0𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

To be noted: 𝛿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ≡ 𝛿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑥𝑓, 𝑦𝑓 , 𝜃𝑓, 𝜑𝑓 ; 𝑦0𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
≡ 𝑦0𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑥𝑓, 𝑦𝑓, 𝜃𝑓, 𝜑𝑓 etc. 



𝜑0𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
as determined by the 

uncalibrated (not optimized) database

𝜑0𝑟𝑒𝑎𝑙 as determined by the equation: 𝜑0𝑟𝑒𝑎𝑙 = 𝜑0𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
−

0.042 ∙ 𝛿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 0.57 ∙ 𝛿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2 − 0.002 ∙

𝜃0𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
+ 0.8 ∙ 𝜃0𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

2 + 0.18 ∙ 𝑦0𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
− 15.9 ∙

𝑦0𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2 + 1.3 ∙ 𝜃0𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

∙ 𝑦0𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

1 + 𝛿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 −
𝑃0

𝑃𝑐
∙

1

1+2∙
𝑃0
𝑀

∙ 𝑠𝑖𝑛2
Θ

2 Left: 1 + 𝛿𝑟𝑒𝑎𝑙 −
𝑃0

𝑃𝑐
∙

1

1+2∙
𝑃0
𝑀

∙ 𝑠𝑖𝑛2
Θ

2
with 𝛿𝑟𝑒𝑎𝑙 = 𝛿 − 0031 ∙ 𝜑0𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

; right: the same 

as left but the abscissa units (MeV) and the ordinate scale (logarithmic). 𝑃0 incident 
electron momentum, 𝑃𝑐 spectrometer central momentum.

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ≡ 𝑎𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒
𝑟𝑒𝑎𝑙 ≡ 𝑎𝑠 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒

Two results



Simultaneous checks of the variance 
and the average of measurements 

to obtain 
an effective Particle Identification system with the RICH detector. 

After a particle crossed the RICH, you have N measurements of the angle the photons it 
generated trough Cherenkov effect were emitted at. It is important to stress that you do not 
want to know at what angle the photons were generated but at which angle. In other words 
you do not have to perform a measurement of the angle but a statistical check that 
guarantees that the angle is equal to one of possible and already known values. The best way 
to perform checks is, of course, applying statistical tests in order to quantitatively determine 
how much an hypothesis about the value of the Cherenkov angle is valid.     
Lots of people prefer using Maximum Likelihood Methods to check the consistency of a series 
of measurements with respect to expected values. 
However, a Maximum Likelihood Method never performs better than a method based on a 
check on the variance of the distribution of the measurements and a check on the variance 
alone never performs better than a simultaneous check on the variance and on the average 
of the distribution of the measurements. When the measurements follow a Gaussian 
distribution, the check on the variance can be easily done with a χ2 test. This is true for 
whatever Maximum Likelihood algorithm is employed.

PID based on Maximum Likelihood Method < 
< PID based on a χ2 test <  

< PID based on a χ2 test and on a check of the mean of the measurements.

(ALWAYS!)



In case of measurements following a Gaussian distribution, their variance can be easily checked with a 𝜒2test.

If the measurements of the Cherenkov angles of the rays of a particle detected by a RICH  follow a Gaussian distribution, 
thus each single measurement 𝑋𝑖, will follow a Gaussian distribution centred around the expected value 𝑋𝑒𝑥𝑝. Then the 

sum:

𝑆𝑢𝑚 = σ𝑖=1
𝑁 𝑋𝑖−𝑋𝑒𝑥𝑝

2

𝜎2𝑒𝑥𝑝
(1) 

follows the χ2 distribution with 𝑁 degrees of freedom (no parameter derived by the 𝑁 measurements).

The sum:

σ𝑖=1
𝑁 𝑋𝑖−𝑋𝑒𝑥𝑝

2

𝜎2𝑒𝑥𝑝
(1)

has N degrees of freedom, because no parameter has been deduced from the measurements 𝑋𝑖, as the value of 𝑋𝑒𝑥𝑝
has been supposed by us and 𝜎2𝑒𝑥𝑝 has been deduced by previous measurements.

The sum can be transformed into:

σ𝑖=1
𝑁 𝑋𝑖−𝑋𝑒𝑥𝑝

2

𝜎2𝑒𝑥𝑝
=

1

𝜎2𝑒𝑥𝑝
× σ𝑋𝑖

2 − 2 × ത𝑋 ∙ 𝑋𝑒𝑥𝑝 + 𝑁 ∙ 𝑋𝑒𝑥𝑝
2 + 𝑁 ∙ ത𝑋2 + 𝑁 ∙ ത𝑋2 − 2 ∙ 𝑁 ∙ ത𝑋2 =

σ𝑖=1
𝑁 𝑋𝑖− ത𝑋 2

𝜎2𝑒𝑥𝑝
+

𝑁

𝜎2𝑒𝑥𝑝
∙ ത𝑋 − 𝑋𝑒𝑥𝑝

2
(2)                          

In (2), the first term is a sum with 𝑁 − 1 degrees of freedom, as the measurement 𝑋𝑖 are connected to each other by 
the value of ത𝑋. The first term is proportional to the variance. A test on it is hence a test on the variance. 

The second term in (2) has only one degree of freedom and corresponds to the distribution of the average value ത𝑋

around the expected value 𝑋𝑒𝑥𝑝 with a standard deviation Τ𝜎𝑒𝑥𝑝 𝑁. A test on it is hence a test on the average value. 

Because of the way they are derived, the two tests are independent (this can be verified by computer simulations too)

The test on the variance and the test on the average of a set of measurements 
are completely independent



A Particle Identification based on the Maximum Likelihood can never perform 
better than a Particle Identification based on the 𝜒2test (demonstration) 

Let us suppose a Kaon crossed the RICH and we detected 4 Čerenkov photons that provided a set of  4 values 
of its mass. The configuration labelled as Set of measurements “α”  has a much bigger probability to happen 
than its mirror symmetric configuration labelled as Set of measurements “β”. The 𝜒2test will correctly 
identify the particle which crossed the RICH, in case the configuration labelled as Set of measurements “α” 
occurs and will fail, vice versa, if the configuration labelled as Set of measurements “β” occurs. If a Maximum 
Likelihood Method correctly identifies the particle crossing the RICH as a Kaon, when the configuration 
labelled as Set of measurements “β” occurs, it will fail, for symmetry reasons, to identify the particle as a 
Kaon in case the configuration labelled as Set of measurements “α” occurs. Because the configuration 
labelled as Set of measurements “α”  has a bigger probability to happen than the configuration labelled as 
Set of measurements “β”, the Maximum Likelihood Method fails to identify correctly the particle more often 
than the 𝜒2test. This happens because the 𝜒2test is anchored to the event probability distribution, while 
the Maximum Likelihood is not.

Pion
(139.570)

Kaon
(493.677)

Mass 
(MeV)

Pion
(139.570)

Kaon
(493.677)

Mass 
(MeV)

Set of
measurements 

“α”  

Set of
measurements 

“β”  



In the case of the experiment E94-107 in Hall A at Jlab, the detected particle momentum was 1.96 GeV/c and the 
refractive radiator index was n = 1.29. The Čerenkov photon angles for protons, 𝐾+ and 𝜋+ were respectively:

𝜗𝑒𝑥𝑝
𝑝

= 0.5366 rad;

𝜗𝑒𝑥𝑝
𝜋+ = 0.6645 rad;

𝜗𝑒𝑥𝑝
𝐾+

= 0.6807 rad;

The variances of the Čerenkov angle distributions around these three distributions were equal to:

(𝜎𝑒𝑥𝑝
𝑝

)2 = (𝜎𝑒𝑥𝑝
𝐾+

)2 = (𝜎𝑒𝑥𝑝
𝜋+ )2 = 𝜎2𝑒𝑥𝑝 = 0.0174 rad

To identify a particle which crossed the RICH and generated 𝑁 clusters on the cathode of the proportional 
chamber, we calculated, for each cluster, the emission angle of the corresponding Čerenkov photon. We obtained 
in this way 𝑁 measurements 𝜗𝑖 of the particle emitted Čerenkov photon angle. We calculated then the average 
value ҧ𝜗 of the 𝑁 measurements 𝜗𝑖: 

ҧ𝜗 =
σ𝑖=1
𝑁 𝜗𝑖
𝑁

And the three sums:

(𝜒𝑝)2 = σ𝑖=1
𝑁

𝑋𝑖−𝜗𝑒𝑥𝑝
𝑝 2

𝜎2𝑒𝑥𝑝
; (𝜒𝐾

+
)2 = σ𝑖=1

𝑁
𝑋𝑖−𝜗𝑒𝑥𝑝

𝐾+
2

𝜎2𝑒𝑥𝑝
;          (𝜒𝜋

+
)2 = σ𝑖=1

𝑁
𝑋𝑖−𝜗𝑒𝑥𝑝

𝜋+
2

𝜎2𝑒𝑥𝑝
;

To identify a particle detected as 𝐾+, we set a confidence level 𝛼𝑟𝑒𝑗 to consider not acceptable the values of (𝜒𝑝)2

and of (𝜒𝜋
+
)2, a confidence level 𝛼𝑎𝑐𝑐 to consider acceptable the value of (𝜒𝐾

+
)2 and a confidence level

𝛼𝑎𝑐𝑐𝑣𝑎𝑙𝑚𝑒𝑑 to consider acceptable the average value ҧ𝜗 when checked against the expected Kaon Čerenkov
emission angle. 𝜗𝑒𝑥𝑝

𝐾+
. Typical values were 𝛼𝑟𝑒𝑗 = 0.0001, 𝛼𝑎𝑐𝑐= 0.001 and 𝛼𝑎𝑐𝑐𝑣𝑎𝑙𝑚𝑒𝑑 = 0.001.

An example: the Jlab Hall A RICH used in the experiment E94-108: 
(hypernuclear spectroscopy)



The 𝜒2test as a method to eliminate false signals 
generated by noise

Very often we are in presence of “false” signals generated by 
noise/background. Most of these false signals can be identified and 
eliminated thanks to the 𝜒2test. In fact, let us suppose that none of the three 

sums: 𝜒𝑝 2, 𝜒𝐾
+ 2

and 𝜒𝜋
+ 2

is acceptable. Because, in any case, at least 
one particle has crossed the RICH, and hence one of the three 𝜒2 values 
would have been statistically acceptable, at least one of the signals we are 
analysing is false. One can hence eliminate 1, 2, …, 𝑁𝑟𝑒𝑚𝑜𝑣𝑒𝑑 terms from the 

sums which define 𝜒𝑝 2, 𝜒𝐾
+ 2

and 𝜒𝜋
+ 2

, starting from the biggest ones, 
until at least one of the three 𝜒2values is acceptable. Removing the biggest 

terms from the sums which define 𝜒𝑝 2, 𝜒𝐾
+ 2

and 𝜒𝜋
+ 2

enhances the 
probability to eliminate false signals instead of the true ones, because noise 
signals spread evenly in the RICH while true signals cluster around the 
expected value. In the hypernuclear spectroscopy experiments we were able 
to eliminate noise signals which amounted to 25% of the total signals. In the 
transversity experiment we were able to eliminate noise signals which 
amounted to 75% of the total signals. With method based on the calculation 
of the average of the signals or on the Maximum Likelihood, the elimination 
of noise signals is impossible.



Results (experiment E94-108):

Inefficacy of the signal average calculation: 

in presence of noise:

𝜗𝑖 distribution ҧ𝜃distribution

𝜒2test effectiveness (without average value test):

𝜗𝑖 distribution 

𝜒𝜋
+ 2

probability

< 0.0001

𝜗𝑖 distribution, both 

𝜒𝜋
+ 2

and 𝜒𝑝 2

probabilities < 0.0001 

𝜗𝑖 distribution, both

𝜒𝜋
+ 2

and 𝜒𝑝 2

probabilities < 0.0001 and 

𝜒𝐾
+ 2

probability > 0.1 

Effectiveness of the 𝜒2test and of the test on the 
average performed simultaneously: 

No RICH PID Both 𝜒𝜋
+ 2

andഥϑ − ϑexp
π+

probabilities < 0.0001 and both

𝜒𝐾
+ 2

and തϑ − ϑexp
K+

probabilities > 0.1 

ൗ𝜋+
𝐾+ rejection ratio = 340 ± 11;

𝐾+ detection efficiency ~ 91%

𝜋+rejection ~ 100%;
𝐾+ detection efficiency ~ 70%

Two Čerenkov detector cuts; 

𝜒𝜋
+ 2

probability < 0.01; 𝜒𝑝 2

probability < 0.0001 and 𝜒𝐾
+ 2

and both 𝜒𝐾
+ 2

and തϑ − ϑexp
K+

probabilities > 0.001 

Two Čerenkov detector 
cuts only

𝜋+rejection ~ 100%;
𝐾+ detection 
efficiency ~ 96%



Radiative effect subtraction
(general concept, rigorous mathematical demonstration in PHYSICAL REVIEW C 91, 034308 (2015)

From Figure A above you see that the resolution of a binding energy spectrum is spoiled by radiative effects. The blue 
curve in Figure A shows an hypothetical binding energy spectrum peak in absence of radiative effects. The red curve in the 
same figure shows as the peak shown by the blue curve transforms because of radiative effects. Let us call “Radiative 
effect function” the function which transform the blue curve into the red curve in Figure A. The blue curve in Figure B 
above shows the spectrum you would have obtained if radiative effects had not existed. The point with errors in Figure B 
shows the measured experimental spectrum, which is given by the convolution of the blue curve with the “Radiative effect 
function”. Let us call “Pure spectrum” the binding spectrum you would have obtained in absence of radiative effects and 
“Experimental spectrum” the experimental spectrum you have obtained. To a certain “Pure spectrum” will correspond one 
and only one “Experimental spectrum” because the “Radiative effect function” is unique. It is true the vice versa: to a 
certain “Experimental spectrum” it will correspond one and only one “Pure spectrum”. This because the experimental 
spectrum is made up even by hundreds of bins while the number of peaks is generally limited. It hence impossible, in 
practice, find two different “Pure spectrums” which generate the same “Experimental spectrum”. The “Radiative effects 
function” is well known and is incorporated in Monte Carlos. Let us suppose that your “Experimental spectrum” has a poor 
resolution energy that forbids to clearly identify peaks. If a Monte Carlo is able to fit your “Experimental spectrum” with 
“Radiative effects turned on” (as shown by the red curve in Figure B), even starting by a peak configuration that is just an 
hypothesis, this Monte Carlo will provide the correct “Pure Spectrum” when it is run with “Radiative effects turned off”. If 
this had not be true, it would have meant that two different “Pure spectrum” would have been able to give the same 
“Experimental spectrum” and this is impossible as quoted above.  The obtained “Pure spectrum” has a much better 
resolution and can be analyzed easily. 

Figure A Figure B





Experimental results 



The elementary reactions 𝑝 𝑒, 𝑒′ Λ

Electroproduction results superimposed on the photoproduction data are plotted. Also shown are 
predictions for photoproduction of several models. The results of the models markedly differ for kaon 
angles smaller than 30°. The relevant difference in dynamics of the presented models is in their 
description of the nonresonant part of the amplitude. The SLA isobar model does not assume any 
hadronic form factors but instead includes exchanges of hyperon resonances to suppress contributions
from the Born terms. The model KM includes hadronic form factors without any hyperon resonances and 
the H2, BS1, and BS3 models include both hyperon resonances and hadronic form factors. The strong 
suppression of the nonresonant part at very small angles is apparent when the hadronic form factors are 
used with or without a small number of hyperon resonances, as in the H2
and KM models, respectively. On the contrary, in the recent isobar models BS1 and BS3, an ample 
number of hyperon resonances with spin 1/2 and 3/2 contribute to the nonresonant part of the 
amplitude that results in a similar behavior of the cross section at 𝜗𝑘

𝑐.𝑚 < 30° as for the SLA model in the 
Figure. In the Regge-plus-resonance model RPR-1, the nonresonant part is given by the Regge trajectories 
without any hadronic form factors. 



There is some disagreement between the DWIA calculation with a standard model of p shell hypernuclei and the 
measurements, both for the position of the peaks and for the cross sections. In fact, the theory predicts a larger 
ratio of the cross sections for the members of the ground-state doublet and a larger spacing between the second 
and third doublets. The 5/2+ state is predicted to be dominantly populated because of the structural dominance 
of spin flip and the strong dominance of the spin-flip part of the elementary amplitude at very small production 
angles (θKγ =1.8°). The predicted theoretical cross sections are 10–20% below the experimental values, probably 
because of uncertainties in the elementary-production operator. The structure calculations of doublet properties 
are generally in agreement with data. There are disagreements for the spacing between doublets. These depend 
mainly on SN and perhaps also on the three body ΛNN interaction that has not yet been included in the shell-
model calculations. The cross sections depend on the spectroscopic factors for proton removal from the target. 

Λ
9𝐿𝑖data



Five peaks are observed in the spectrum. The main ones are the g.s. peak and the p-shell peak at 10.93 MeV. The 
peak at  𝐸𝑥=5.94 MeV has the narrowest width (560 keV). The two main peaks have widths larger suggesting that 
they are composed of two or more peaks separated by a noticeable excitation energy. States with an sΛ coupled to 
excited 11B core states are clearly observed between the g.s. and the peak at 10.93 MeV with signal-to-noise 
ratios larger than 5. The positions of these levels were determined with uncertainties of less than 100 keV. This 
states are observable because the spin-spin interaction enhances their cross sections with respect to the weak-
coupling limit. The comparison with the data shows that theory mostly underpredicts the cross sections by
20–40%,

Λ
12𝐵data



Λ
16𝑁data

Four peaks are observed in the spectrum. The ground state peak gives a separation energy of 
B=13.76 ± 0.16 (stat.) ± 0.04 (syst.) MeV for the 1− member of the ground-state doublet.Three more peaks are 
observed at binding energies of 6.93, 2.84, and −3.34 MeV. The theory overpredicts the cross sections by 10–30%, 

contrary to the case of  Λ
12𝐵 and Λ

9𝐿𝑖 production. This opposite tendency of the hypernuclear cross sections can be 
hardly attributed to uncertainties in the elementary production cross sections but  is more likely due to the use of 
simple hole states for the 15N core nucleus



Conclusions

The experiment E94-107 performed the study of binding and/or excitation energy 

spectra of the hypernuclei Λ
9𝐿𝑖, Λ

12𝐵, and Λ
16𝑁. To make this experiment run very 

important upgrades of the standard Hall A apparatus were needed, namely the addition 
of two septa to make HRSs being able to detect particles scattered at very forward 
angles and the addition of a RICH detector to the detector package of one HRS in order 
to obtain a PID able to  eliminate the very big pion and proton background. Innovative 
analysis algorithms were needed to optimize the optic databases of the spectrometers 
employed, to achieve a very good PID and to obtain the desired resolution. Interesting 
data were achieved which prompt theoreticians to refine their tools of analysis and the 
experimentalists to further continue their investigations with the study of binding 
energy spectra of other hypernuclei


