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Streaming Readout and Data-Stream Processing With ERSAP

Environment for Real-time Streaming, 
Acquisition and Processing 
 

V. Gyurjyan, D. Abbott, M. Goodrich, G. Heyes, E. Jastrzembski, D. 
Lawrence, B. Raydo, C. Timmer



Flow-Based Programming Paradigm 
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• Proposed in the late 60s by J. Paul Rodker 
Morrison

• “Assembly line” data processing
• Data flows through asynchronous, concurrent 

processors (“black box” actors)
• Actors communicate via data chunks (called 

information packets or data-quanta)
• Data-quanta are traveling across predefined 

connections (conveyor belts), where connections 
are specified externally to the processors.

• Data is pushed through actors, while actors are 
reacting on passing data quantum.

• Actors are performing independent, well-defined 
functions

• Simple reconfigure
• Fault tollerant



ERSAP 3-layer structure
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Summary
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• ERSAP is a software LEGO system
－ Encourages application design based on software artifacts (LEGO bricks)

• Easier to understand and develop 
• Reduced develop-deploy-debug cycle 
• Easy to migrate to data
• Scales independently
• Independent optimizations

• Improves fault isolation
• Easy to embrace hardware as well as software heterogeneity. 
• Eliminates long term commitment to a single technology stack.

Agile framework that makes easy software evolution over time!
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EJFAT: Accelerated Edge to Core Workflow Steering

FPGA
Enhanced

NICs

(LB)
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Dynamic Compute Resource Load Balancing (PID/AI/ML)

FPGA Based Network Acceleration

Geographic / Network Independence
Indirection to Cluster

Compression DecompressionLoss-less Tagged UDP Streaming 



Steering/Scaling: Data Event -> Host Rotation

Event 
Sequence

Event 
Sequence

Colors → Events
Shapes → Channels 
(ROCs)

10

Host1

HostN

Load Balancer

μSec

Round Robin
Distribution

Across Hosts



Schedule:   Q (Reinforcement) Learning

● Q Learning:
● Many Variants
● Exploration / Exploitation
● Exploration → Learning
● Exploitation → Control



Schedule:    PID Control



LB : Control Plane Simulation – Symmetric
Sym N1 N2 N3 N4

EPR 500 500 500 500

FEPR 25% 25% 25% 25%

PID N1 N2 N3 N4

SD 25% 25% 25% 25%

Db 400 400 400 400

FIFO 3.4 3.4 3.4 3.4

QL N1 N2 N3 N4

SD 25% 25% 25% 25%

Db 400 400 400 400

FIFO 3.2 2.9 2.9 3.0

EPR=Event Processing Rate Db=Event Disbursement Rate SD=Schedule Density



LB : Control Plane Simulation – Asymmetric

ASym N1 N2 N3 N4

EPR 400 467 533 600

FEPR 20% 23% 27% 30%

PID N1 N2 N3 N4

SD 20% 23% 27% 30%

Db 320 373 426 480

FIFO 4.6 3.7 3.1 2.7

QL N1 N2 N3 N4

SD 21% 24% 26% 29%

Db 334 380 422 463

FIFO 7.4 3.9 2.2 1.2

EPR=Event Processing 
Rate

Db=Event 
Disbursement Rate

SD=Schedule Density



JIRIAF

JLAB Integrating Research Infrastructure Across Facilities 

V. Gyurjyan, C. Larrieu, D. Lawrence, G. Heyes

July 22, 2022



Design Architecture
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• Improving operational efficiency of data centers can potentially 
delay compute resource expansion, controlling the carbon 
footprint of a computing facility.  

Controlling Carbon Footprint
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Concept Validation Experiment 
CLAS12 Data-Stream processing at NERSC. Stage 3
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AI Driven Experiment 
Calibration and Control

Thomas Britton
David Lawrence

Naomi Jarvis
Torri Jeske

Diana McSpadden
Nikhil Kalra
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The Gluonic Excitations Experiment: GlueX
GlueX detector located in Hall D at Jefferson Lab, VA

20
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https://doi.org/10.1016/j.nima.2020.164807


The GlueX Central Drift Chamber

● 1.5 m long x 1.2 m diameter cylinder
● 3522 anode wires at 2125 V inside 1.6 cm diameter 

straws
● 50:50 Ar:CO2 gas mixture
● Requires two calibrations: chamber gain and 

time-to-distance

Used to detect and track charged particles with momenta p > 
0.25 GeV/c
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Deployment 1 – Cosmic Ray Test

● Sorted high voltage boards (HVB) into 
two groups:

○ AI Tuned
○ Constant: 2130 V (5V higher than 

normal to compensate for no 
beam)

● ML
○ Update every 5 minutes
○ Completely autonomous

● Should see the gain stabilized for the 
Tuned group
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Deployment 1 – Cosmic Ray Test

23
05/09/23



Deployment 2 – Charged Pion Polarizability May-June 2022

 
HV

HVB current (uA)

Temp (K)

  
Pressure

● RoboCDC used automatically at the start of 

each 2h run

● Use recommended HV if std <= 3% ideal GCF

● Otherwise, use the closest ‘confident’ HV in 

Euclidean distance on the uncertainty mesh

● Reverted to 2125V for empty target runs

● Low stakes - CDC not critical for CPP run period

● CPP: unusual running conditions

○ Different target in different location

○ Low beam current
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Deployment 3 – PrimEx-η June-Dec 2022

• GCF obtained from dE/dx after the run
• Preliminary results show GCF predominantly within 5% of ideal value for runs with 

tuned HV
• Plot of GCF/ideal for tuned HV and fixed HV also shows pressure/temperature 

Tuned HV
Fixed HV
Pressure/Temperature
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Calibration of the Forward Calorimeter

=
Gain calibration values

Traditional Calibration:
• iterative over π0s
• Requires particle 

reconstruction
• Statistics sometimes difficult
Can we use the LED monitoring 
system and Machine Learning?

Can ML learn traditional calibrations?

Average results over 5-fold cross validation

Initial Physics Comparison

• Does prediction accuracy result 
in good physics results?

• We have an initial π0 analysis
• Single run, entire FCAL

• π0
PDG mass: 134.98 MeV

• Using our calibrations: 133.31 MeV

Diana McSpadden, Cullan Bedwell, 
Abhijeet Chawhan, Julie Crowe
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COMPUTER VISION FOR REAL TIME DATA QUALITY 

MONITORING

CHEP 2023 

TORRI JESKE

roark@jlab.org

THOMAS BRITTON

tbritton@jlab.org

KISHANSINGH RAJPUTDAVID LAWRENCE

davidl@jlab.org



Human Classification
What influenced your decision?

1/ Probably good

We expect to see higher occupancies closer to the 
beam line. This appears to look consistent with other 

monitoring histograms.

2/ Probably NOT good

Turns out this giant hole is *fine* if you temporarily 
donate some electronics to another detector. 
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This is an obvious example! 



Less Obvious Examples 
It's hard to tell right away if an image is bad!
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Online 
monitoring 
is tedious.
Varying levels of expertise

Inconsistent monitoring

Multiple plots per detector system

Probably too many plots to look at

Approximate number of individual histograms per experiment per 
run, monitored by the shift crew for each experimental hall. 

714

400

90
138
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Can we use computer vision to mimic the Shift Crew?
Reduce inconsistencies inherent with human-based monitoring.

Correctly classify monitoring images quickly 
and more frequently than humans

PREDICTED: [('N02112137', 'CHOW', 4.611241), ('N02124075', 'EGYPTIAN_CAT', 4.3817368)]
HTTPS://KERAS.IO/EXAMPLES/VISION/GRAD_CAM/

5

Shift Crew AI

Explainable predictions: can the model tell us 
what influenced it's decision?



Why did the model make that prediction?

We are usually much more interested in what 

makes an image bad than good.

• Deep neural networks have great performance 
but are hard to interpret.

• Interpretability matters, especially when 
implementing smart systems into our typical 
work flows.

• Visual explanations with Gradient-weighted 
Class Activation Maps (GradCAM)

Uses the gradients of any target concept flowing into the final 

convolutional layer to produce a map that highlights important 

regions in the image for the prediction

6

Reference: https://arxiv.org/pdf/1610.02391.pdf



HYDRA: Front End
Web based for user convenience.

Data Labeler

Efficiently label 
hundreds (thousands) 

of images

Library

Contains enhanced 
confusion matrix, 
thresholds, active 

model designations

Run

See near real time 
predictions

Grafana 

Dashboard displays all 
predictions over time

Log

Display concerning 
plots sorted by 
detector from 
previous day
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and Computing Infrastructure

EPSCI is leading several projects:
● ERSAP modular streaming readout platform

● EJFAT smart, dynamic traffic shaping

● JIRIAF HPC/HTC resource optimization and rollover

● AIEC AI for Experimental Controls

● Hydra AI Data Quality Monitoring

● PHASM surrogate model integration tools

● JANA2 multi-threaded reconstruction framework

Several languages are used
● C++
● Python
● Java


