
Introduction to JANA

Nathan Brei
nbrei@jlab.org

JLab Software and Computing Workshop
May 18, 2023

What is JANA?

• JANA is a multithreaded reconstruction framework project written in
low-level C++

• Nearly 2 decades of experience behind it
• JANA2 is a rewrite that incorporates modern coding practices. Aims to be
clean, lightweight, and user-friendly. “Paying off technical debt”

• JANA2 introduces an innovative dataflow parallelism paradigm under the
hood, which has implications for streaming readout and heterogeneous
hardware utilization

• Used by EIC ePIC, GlueX, INDRA-ASTRA, BDX, TriDAS+ERSAP+JANA2 streaming
DAQ project

2

Where does JANA fit in the NP software pipeline?

reconstruct : hits -> tracks

Event Gen (e.g. Pythia) Detector Sim (e.g. Geant4) Reconstruction Analysis

Detector optimization

DAQ Event builder

3

JANA API

• Event sources
Sources accept a resource name (i.e. a file name or network socket), and emit a
stream of JEvent objects. They run single-threaded by default.

• Factories
Factories compute intermediate results, e.g. Hit->Track. This is essentially a map
pattern. Each worker thread gets its own instance of each factory, so factories can
calculate their results independently and without locking.

• Event processors
Event processors consume the entire event stream sequentially after all of the
necessary factories have run. They implement the reduce pattern. They are useful
for writing DST files and histograms.

• Services
Services provide access to shared data such as geometry, calibrations, random
number generators, etc. They are essentially singleton objects. Services are the only
JANA components that are required to be thread-safe.

4

Factories
#include <JANA/JFactoryT.h>

class SimpleClusterFactory : public JFactoryT<Cluster> {
// ...

public:
SimpleClusterFactory() {

SetTag("ECalClusters");
}
void Init() {

// ...

}
void ChangeRun(const std::shared_ptr<const JEvent> &event) {

// ...

}
void Process(const std::shared_ptr<const JEvent> &event) {

auto hits = event->Get<Hit>("RawECalHits");
std::vector<Cluster*> clusters = clusterize(hits);
Set(clusters);

}
};

• Lazy: Factories are only run if their data
is requested

• Recursive: Factories can call out to
other factories

• Memoized: The result is cached so it’s
only computed once

• Allowed to be stateful, with limits

5

Factories
#include <JANA/JFactoryT.h>

class SimpleClusterFactory : public JFactoryT<Cluster> {
double m_threshold = 1.0;
std::shared_ptr<BFieldMapSvc> m_bfieldmap_svc;
std::shared_ptr<BFieldMap> m_bfieldmap;

public:
SimpleClusterFactory() {

SetTag("ECalClusters");
}
void Init() {

// Obtain parameters and services here
auto app = GetApplication();
app->SetDefaultParameter("threshold", m_threshold);
m_bfieldmap_svc = app->GetService<MagFieldMap>();

}
void ChangeRun(const std::shared_ptr<const JEvent> &event) {

/// Obtain calibrations/conditions here
auto run_nr = event->GetRunNumber();
m_bfieldmap = m_bfieldmap_svc->GetBFieldForRun(run_nr);

}
void Process(const std::shared_ptr<const JEvent> &event) {

auto hits = event->Get<Hit>("RawECalHits");
std::vector<Cluster*> clusters = clusterize(hits);
Set(clusters);

}
};

• Lazy: Factories are only run if their data
is requested

• Recursive: Factories can call out to
other factories

• Memoized: The result is cached so it’s
only computed once

• Allowed to be stateful, with limits
6

Multifactories

#include <JANA/JMultifactory.h>

class ClusterFactory : public JMultifactory {

public:
ClusterFactory() {

DeclareOutput<Cluster>("ECalClusters");
DeclareOutput<ClusterAssoc>("ECalClusterAssocs");

}
void Init() {

// ...
}
void ChangeRun(const std::shared_ptr<const JEvent> &event) {

// ...
}
void Process(const std::shared_ptr<const JEvent> &event) {

auto hits = event->Get<Hit>("RawECalHits");
auto [clusters, assocs] = clusterize(hits);
SetData("ECalClusters", clusters);
SetData("ECalClusterAssocs", assocs);

}
};

• New as of JANA2 v2.1.0!
• Use this when you have
multiple outputs originating
from one algorithm

• Tiny performance penalty
compared to JFactoryT

7

Sources
#include <JANA/JEventSource.h>

class MyEventSource : public JEventSource {
MyReader m_reader;
int m_total_events;

public:
MyEventSource(std::string resource_name, JApplication* app)

: JEventSource(resource_name, app) {}

void Open() override {
m_reader.openFile(GetResourceName());
m_total_events = m_reader.getEntries();

}
void GetEvent(std::shared_ptr<JEvent>) {

if (GetEventCount() == m_total_events) {
throw RETURN_STATUS::kNO_MORE_EVENTS;

}

auto event_data = m_reader.read(GetEventCount());
event->SetEventNumber(event_data.getEventNumber());
event->SetRunNumber(event_data.getRunNumber());

auto ecalRawHits = event_data.get<RawHit>("EcalRawHits");
event->Insert<RawHit>(ecalRawHits, "EcalRawHits");
// etc...
// Note: Use the Visitor Pattern to do this more generally

}
};

• JEventSources are
auto-mapped to resource
names via
JEventSourceGenerator.

• Supports polling a network
socket

• Supports notifying when an
event finishes

• Does NOT support random
access yet

8

Processors
#include <JANA/JEventProcessorSequentialRoot.h>

class MyProcessor: public JEventProcessorSequentialRoot {
private:

// Data objects we will need from JANA e.g.
PrefetchT<edm4hep::SimCalorimeterHit> rawhits = {this, "EcalRawHits"};

// Declare histogram and tree pointers here. e.g.
TH1D* hEraw = nullptr;

public:
MyProcessor() { SetTypeName(NAME_OF_THIS); }

void InitWithGlobalRootLock() {
auto rootfile_svc = GetApplication()->GetService<RootFileSvc>();
auto rootfile = rootfile_svc->GetHistFile();
rootfile->mkdir("myFirstPlugin")->cd();
hEraw = new TH1D("Eraw", "BEMC hit energy (raw)", 100, 0, 0.075);

}
void ProcessSequential(const std::shared_ptr<const JEvent>& event) {

for(auto hit : rawhits())
hEraw->Fill(hit->getEnergy());

}
void FinishWithGlobalRootLock() {

}
};

• Unlike factories, processors
are singletons and see the
entire event stream

• Processors run sequentially, so
do as much work as possible
in factories instead (“critical
section”)

• Each processor should
produce one kind of output
(single responsibility principle)

• You can choose which
processors are included at
runtime by using plugins

9

Event data model

• JANA factories can produce any datatype you need!
• JANA provides a simple, optional EDM base class called JObject

• Reports its own fields, their contents, and their documentation
• Maintains a lightweight graph of associations with other JObjects
• Works well with external tools for inspecting/visualizing/debugging the event
stream

• JANA supports using a different base class, e.g. TObject.
• Your EDM classes can optionally multiply-inherit
• Call JFactory::EnableGetAs<BaseT>() to register each base class with
the factory

• Call JFactory::GetAs<BaseT> to retrieve its data as
std::vector<BaseT*>

• Call JEvent::GetAllChildren<BaseT>() to retrieve all event data as
std::map<(typename,tagname), BaseT*>.

10

PODIO event data model
options :

getSyntax: False
exposePODMembers: True
includeSubfolder: True

datatypes :
ExampleHit :

Description : "Example Hit"
Author : "B. Hegner"
Members:

- unsigned long long cellID // cellID
- double x // x-coordinate
- double y // y-coordinate
- double z // z-coordinate
- double energy // measured energy deposit

ExampleCluster :
Description : "Cluster"
Author : "B. Hegner"
Members:

- double energy // cluster energy
OneToManyRelations:

- ExampleHit Hits // Hits used to make this
- ExampleCluster Clusters // Subclusters

• A heavy-duty library for generating an
EDM from a YAML file

• I/O to/from C++ object trees, Python
object trees, and RDataframe

• Enforces correct ownership, constness,
inter-object references

• JANA now has first-class support for
PODIO including the ability to access
collections directly via
event->GetCollection(name) and
JFactoryPodioT::SetCollection.

11

Plugins

#include <JANA/JApplication.h>

extern "C" {
void InitPlugin(JApplication *app) {

InitJANAPlugin(app);
app->Add(new JFactoryGeneratorT<MyClusterFactory>);

}

jana -Pplugins=podio,reco,tracking $PATH_TO_INPUTFILE

• Plugins are one mechanism for
enforcing modular design

• Each plugin is its own (dynamically
loaded) shared library.

• Each plugin can register any number of
components (i.e. sources, factories,
processors, services) with JANA’s
JApplication.

• Plugins can depend on other plugins,
e.g. tracking could depend on acts.

• Plugins can also be useful for optionally
integrating common analysis tasks, e.g.
monitoring plots, and integration tests.

12

Looking under the hood: Dataflow parallelism

• JANA2 avoids locks in favor of a network of ‘queues and arrows’, analogous to
an assembly line in a real-world factory

• Each worker thread is assigned an arrow, conceptually like a conveyor belt
• Arrows can be either sequential (only one worker at a time) or parallel (many
workers can perform these tasks at once)

• Between each arrow lies a queue. Workers don’t need to coordinate with
each other, just pick up new tasks off their input queue and put finish tasks
onto their output queue.

• If a queue backs up, some of the workers move to a different arrow
(backpressure!)

13

A graphical notation for queues and arrows

• Arrows are allowed to produce a
different number of output objects
than they consume, and to choose
from different output queues

• This allows us to do things like
• Split/merge
• Gather/scatter
• Filtering
• Streaming joins

• This lets us have different units of
parallelism at different points in our
computation

• Event blocks
• Subevents

14

Example: Event blocks

Problem: The GlueX event builder stores ‘entangled’ events in blocks of 40.
Disentangling is expensive and needs to be done in parallel. In JANA1, this is
accomplished by a separate thread team that JANA knows nothing about.

Solution: Flatmap pattern:
block_source.next :: () -> block
block_source.disentangle :: block -> [event]

15

Example: SRO event selection and filtering

Problem: A ‘triggerless’ streaming system receives timeslices directly from the
DAQ (instead of events from the event builder), and performs partial
reconstruction directly on the timeslices in order to identify event boundaries.

16

Example: Subevents + GPU offloading

Problem: Offloading the data to a GPU/TPU/etc is a sequential bottleneck! We
want to batch our data so that we can utilize the full parallelism of the
heterogeneous hardware.

Solution: Split/merge pattern:
• Split each event into subtasks
• Batch subtasks together, possibly across event boundaries
• Send the batched subtasks to the hardware and wait for the results
• Attach the subtask results to their corresponding event

17

Thank you! That is all.

17

